Revīziju vēsture

Autors SHA1 Ziņojums Datums
  youchen 56ebfc2536 keras usage and other hight level apis 5 gadi atpakaļ
  youchen b73da0e7c4 tensorboard usage. RNN structure 5 gadi atpakaļ
  youchen 448ad3851d implement LeNet5 structure using dataset read from tfrecord. code debug. image sometimes stored as uint8 or float32, which need to be clear in mind when using the dataset. Some image preprocessing functions may require 3 channels image rather than grayscale image, such as modify saturation, hue and contrast. 5 gadi atpakaļ
  youchen acbb23da1d inceptionv3 nn structure, img_proccess, tfrecord read & write, multiThread, coordinator and queueRunner 5 gadi atpakaļ
  youchen 1f26f95c7c add LeNet5 cnn structure, conv, polling, dropout. cnn must be trained in a better GPU 5 gadi atpakaļ
  youchen 20c7ffabb3 squeeze file structure 6 gadi atpakaļ
  carbo-T 30ef1bf358 restructured nn for mnist number recognition, together with saved nn weights, diagrams and photos 6 gadi atpakaļ
  carbo-T cb4034113f add previous python files 6 gadi atpakaļ
  carbo-T b1cbb82d80 mnist dataset training and validation 6 gadi atpakaļ
  youchen 9d8052225d tensorflow basic operations with a NN sample 6 gadi atpakaļ
  youchen 4270ed650e the first step 6 gadi atpakaļ
  carbo-T 4f40fbb383 some notes for the TF installation 6 gadi atpakaļ
  carbo-T 75baf32fa7 record system information for the TF 6 gadi atpakaļ
  carbo-T 591b2bde87 Initial commit 6 gadi atpakaļ