|
@@ -12,13 +12,13 @@ BATCH_SIZE = 1000
|
|
|
LEARNING_RATE_BASE = 0.8
|
|
|
LEARNING_RATE_DECAY = 0.99
|
|
|
REGULARIZATION_RATE = 0.0001
|
|
|
-TRAINING_STEPS = 50000
|
|
|
+TRAINING_STEPS = 30000
|
|
|
MOVING_AVERAGE_DECAY = 0.99
|
|
|
|
|
|
MODEL_SAVE_PATH = "model/"
|
|
|
MODEL_NAME = "model.ckpt"
|
|
|
|
|
|
-
|
|
|
+# train a fully connected neural network
|
|
|
def train(mnist):
|
|
|
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
|
|
|
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
|