LiuZe 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
..
dnn_model_runner 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
face_detector 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
results 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
CMakeLists.txt 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
README.md 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
action_recognition.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
classification.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
classification.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
colorization.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
colorization.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
common.hpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
common.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
custom_layers.hpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
dasiamrpn_tracker.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
download_models.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
edge_detection.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
face_detect.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
face_detect.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
fast_neural_style.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
human_parsing.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
human_parsing.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
js_face_recognition.html 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
mask_rcnn.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
mobilenet_ssd_accuracy.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
models.yml 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
nanotrack_tracker.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
object_detection.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
object_detection.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
openpose.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
openpose.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
optical_flow.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
person_reid.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
person_reid.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
scene_text_detection.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
scene_text_recognition.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
scene_text_spotting.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
segmentation.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
segmentation.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
shrink_tf_graph_weights.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
siamrpnpp.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
speech_recognition.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
speech_recognition.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
text_detection.cpp 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
text_detection.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
tf_text_graph_common.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
tf_text_graph_efficientdet.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
tf_text_graph_faster_rcnn.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
tf_text_graph_mask_rcnn.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
tf_text_graph_ssd.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás
virtual_try_on.py 73b6a436cb 添加protobuf3.17版本源码及opencv源码 1 ano atrás

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Sample models

You can download sample models using download_models.py. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:

python download_models.py --save_dir FaceDetector opencv_fd

You can use default configuration files adopted for OpenCV from here.

You also can use the script to download necessary files from your code. Assume you have the following code inside your_script.py:

from download_models import downloadFile

filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
print(filepath1)
print(filepath2)
# Your code

By running the following commands, you will get MobileNetSSD_deploy.caffemodel file:

export OPENCV_DOWNLOAD_DATA_PATH=download_folder
python your_script.py

Note that you can provide a directory using save_dir parameter or via OPENCV_SAVE_DIR environment variable.

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References