123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 |
- import argparse
- import cv2 as cv
- import numpy as np
- import os
- """
- Link to original paper : https://arxiv.org/abs/1812.11703
- Link to original repo : https://github.com/STVIR/pysot
- You can download the pre-trained weights of the Tracker Model from https://drive.google.com/file/d/11bwgPFVkps9AH2NOD1zBDdpF_tQghAB-/view?usp=sharing
- You can download the target net (target branch of SiamRPN++) from https://drive.google.com/file/d/1dw_Ne3UMcCnFsaD6xkZepwE4GEpqq7U_/view?usp=sharing
- You can download the search net (search branch of SiamRPN++) from https://drive.google.com/file/d/1Lt4oE43ZSucJvze3Y-Z87CVDreO-Afwl/view?usp=sharing
- You can download the head model (RPN Head) from https://drive.google.com/file/d/1zT1yu12mtj3JQEkkfKFJWiZ71fJ-dQTi/view?usp=sharing
- """
- class ModelBuilder():
- """ This class generates the SiamRPN++ Tracker Model by using Imported ONNX Nets
- """
- def __init__(self, target_net, search_net, rpn_head):
- super(ModelBuilder, self).__init__()
- # Build the target branch
- self.target_net = target_net
- # Build the search branch
- self.search_net = search_net
- # Build RPN_Head
- self.rpn_head = rpn_head
- def template(self, z):
- """ Takes the template of size (1, 1, 127, 127) as an input to generate kernel
- """
- self.target_net.setInput(z)
- outNames = self.target_net.getUnconnectedOutLayersNames()
- self.zfs_1, self.zfs_2, self.zfs_3 = self.target_net.forward(outNames)
- def track(self, x):
- """ Takes the search of size (1, 1, 255, 255) as an input to generate classification score and bounding box regression
- """
- self.search_net.setInput(x)
- outNames = self.search_net.getUnconnectedOutLayersNames()
- xfs_1, xfs_2, xfs_3 = self.search_net.forward(outNames)
- self.rpn_head.setInput(np.stack([self.zfs_1, self.zfs_2, self.zfs_3]), 'input_1')
- self.rpn_head.setInput(np.stack([xfs_1, xfs_2, xfs_3]), 'input_2')
- outNames = self.rpn_head.getUnconnectedOutLayersNames()
- cls, loc = self.rpn_head.forward(outNames)
- return {'cls': cls, 'loc': loc}
- class Anchors:
- """ This class generate anchors.
- """
- def __init__(self, stride, ratios, scales, image_center=0, size=0):
- self.stride = stride
- self.ratios = ratios
- self.scales = scales
- self.image_center = image_center
- self.size = size
- self.anchor_num = len(self.scales) * len(self.ratios)
- self.anchors = self.generate_anchors()
- def generate_anchors(self):
- """
- generate anchors based on predefined configuration
- """
- anchors = np.zeros((self.anchor_num, 4), dtype=np.float32)
- size = self.stride**2
- count = 0
- for r in self.ratios:
- ws = int(np.sqrt(size * 1. / r))
- hs = int(ws * r)
- for s in self.scales:
- w = ws * s
- h = hs * s
- anchors[count][:] = [-w * 0.5, -h * 0.5, w * 0.5, h * 0.5][:]
- count += 1
- return anchors
- class SiamRPNTracker:
- def __init__(self, model):
- super(SiamRPNTracker, self).__init__()
- self.anchor_stride = 8
- self.anchor_ratios = [0.33, 0.5, 1, 2, 3]
- self.anchor_scales = [8]
- self.track_base_size = 8
- self.track_context_amount = 0.5
- self.track_exemplar_size = 127
- self.track_instance_size = 255
- self.track_lr = 0.4
- self.track_penalty_k = 0.04
- self.track_window_influence = 0.44
- self.score_size = (self.track_instance_size - self.track_exemplar_size) // \
- self.anchor_stride + 1 + self.track_base_size
- self.anchor_num = len(self.anchor_ratios) * len(self.anchor_scales)
- hanning = np.hanning(self.score_size)
- window = np.outer(hanning, hanning)
- self.window = np.tile(window.flatten(), self.anchor_num)
- self.anchors = self.generate_anchor(self.score_size)
- self.model = model
- def get_subwindow(self, im, pos, model_sz, original_sz, avg_chans):
- """
- Args:
- im: bgr based input image frame
- pos: position of the center of the frame
- model_sz: exemplar / target image size
- s_z: original / search image size
- avg_chans: channel average
- Return:
- im_patch: sub_windows for the given image input
- """
- if isinstance(pos, float):
- pos = [pos, pos]
- sz = original_sz
- im_h, im_w, im_d = im.shape
- c = (original_sz + 1) / 2
- cx, cy = pos
- context_xmin = np.floor(cx - c + 0.5)
- context_xmax = context_xmin + sz - 1
- context_ymin = np.floor(cy - c + 0.5)
- context_ymax = context_ymin + sz - 1
- left_pad = int(max(0., -context_xmin))
- top_pad = int(max(0., -context_ymin))
- right_pad = int(max(0., context_xmax - im_w + 1))
- bottom_pad = int(max(0., context_ymax - im_h + 1))
- context_xmin += left_pad
- context_xmax += left_pad
- context_ymin += top_pad
- context_ymax += top_pad
- if any([top_pad, bottom_pad, left_pad, right_pad]):
- size = (im_h + top_pad + bottom_pad, im_w + left_pad + right_pad, im_d)
- te_im = np.zeros(size, np.uint8)
- te_im[top_pad:top_pad + im_h, left_pad:left_pad + im_w, :] = im
- if top_pad:
- te_im[0:top_pad, left_pad:left_pad + im_w, :] = avg_chans
- if bottom_pad:
- te_im[im_h + top_pad:, left_pad:left_pad + im_w, :] = avg_chans
- if left_pad:
- te_im[:, 0:left_pad, :] = avg_chans
- if right_pad:
- te_im[:, im_w + left_pad:, :] = avg_chans
- im_patch = te_im[int(context_ymin):int(context_ymax + 1),
- int(context_xmin):int(context_xmax + 1), :]
- else:
- im_patch = im[int(context_ymin):int(context_ymax + 1),
- int(context_xmin):int(context_xmax + 1), :]
- if not np.array_equal(model_sz, original_sz):
- im_patch = cv.resize(im_patch, (model_sz, model_sz))
- im_patch = im_patch.transpose(2, 0, 1)
- im_patch = im_patch[np.newaxis, :, :, :]
- im_patch = im_patch.astype(np.float32)
- return im_patch
- def generate_anchor(self, score_size):
- """
- Args:
- im: bgr based input image frame
- pos: position of the center of the frame
- model_sz: exemplar / target image size
- s_z: original / search image size
- avg_chans: channel average
- Return:
- anchor: anchors for pre-determined values of stride, ratio, and scale
- """
- anchors = Anchors(self.anchor_stride, self.anchor_ratios, self.anchor_scales)
- anchor = anchors.anchors
- x1, y1, x2, y2 = anchor[:, 0], anchor[:, 1], anchor[:, 2], anchor[:, 3]
- anchor = np.stack([(x1 + x2) * 0.5, (y1 + y2) * 0.5, x2 - x1, y2 - y1], 1)
- total_stride = anchors.stride
- anchor_num = anchors.anchor_num
- anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
- ori = - (score_size // 2) * total_stride
- xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
- [ori + total_stride * dy for dy in range(score_size)])
- xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
- np.tile(yy.flatten(), (anchor_num, 1)).flatten()
- anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
- return anchor
- def _convert_bbox(self, delta, anchor):
- """
- Args:
- delta: localisation
- anchor: anchor of pre-determined anchor size
- Return:
- delta: prediction of bounding box
- """
- delta_transpose = np.transpose(delta, (1, 2, 3, 0))
- delta_contig = np.ascontiguousarray(delta_transpose)
- delta = delta_contig.reshape(4, -1)
- delta[0, :] = delta[0, :] * anchor[:, 2] + anchor[:, 0]
- delta[1, :] = delta[1, :] * anchor[:, 3] + anchor[:, 1]
- delta[2, :] = np.exp(delta[2, :]) * anchor[:, 2]
- delta[3, :] = np.exp(delta[3, :]) * anchor[:, 3]
- return delta
- def _softmax(self, x):
- """
- Softmax in the direction of the depth of the layer
- """
- x = x.astype(dtype=np.float32)
- x_max = x.max(axis=1)[:, np.newaxis]
- e_x = np.exp(x-x_max)
- div = np.sum(e_x, axis=1)[:, np.newaxis]
- y = e_x / div
- return y
- def _convert_score(self, score):
- """
- Args:
- cls: score
- Return:
- cls: score for cls
- """
- score_transpose = np.transpose(score, (1, 2, 3, 0))
- score_con = np.ascontiguousarray(score_transpose)
- score_view = score_con.reshape(2, -1)
- score = np.transpose(score_view, (1, 0))
- score = self._softmax(score)
- return score[:,1]
- def _bbox_clip(self, cx, cy, width, height, boundary):
- """
- Adjusting the bounding box
- """
- bbox_h, bbox_w = boundary
- cx = max(0, min(cx, bbox_w))
- cy = max(0, min(cy, bbox_h))
- width = max(10, min(width, bbox_w))
- height = max(10, min(height, bbox_h))
- return cx, cy, width, height
- def init(self, img, bbox):
- """
- Args:
- img(np.ndarray): bgr based input image frame
- bbox: (x, y, w, h): bounding box
- """
- x, y, w, h = bbox
- self.center_pos = np.array([x + (w - 1) / 2, y + (h - 1) / 2])
- self.h = h
- self.w = w
- w_z = self.w + self.track_context_amount * np.add(h, w)
- h_z = self.h + self.track_context_amount * np.add(h, w)
- s_z = round(np.sqrt(w_z * h_z))
- self.channel_average = np.mean(img, axis=(0, 1))
- z_crop = self.get_subwindow(img, self.center_pos, self.track_exemplar_size, s_z, self.channel_average)
- self.model.template(z_crop)
- def track(self, img):
- """
- Args:
- img(np.ndarray): BGR image
- Return:
- bbox(list):[x, y, width, height]
- """
- w_z = self.w + self.track_context_amount * np.add(self.w, self.h)
- h_z = self.h + self.track_context_amount * np.add(self.w, self.h)
- s_z = np.sqrt(w_z * h_z)
- scale_z = self.track_exemplar_size / s_z
- s_x = s_z * (self.track_instance_size / self.track_exemplar_size)
- x_crop = self.get_subwindow(img, self.center_pos, self.track_instance_size, round(s_x), self.channel_average)
- outputs = self.model.track(x_crop)
- score = self._convert_score(outputs['cls'])
- pred_bbox = self._convert_bbox(outputs['loc'], self.anchors)
- def change(r):
- return np.maximum(r, 1. / r)
- def sz(w, h):
- pad = (w + h) * 0.5
- return np.sqrt((w + pad) * (h + pad))
- # scale penalty
- s_c = change(sz(pred_bbox[2, :], pred_bbox[3, :]) /
- (sz(self.w * scale_z, self.h * scale_z)))
- # aspect ratio penalty
- r_c = change((self.w / self.h) /
- (pred_bbox[2, :] / pred_bbox[3, :]))
- penalty = np.exp(-(r_c * s_c - 1) * self.track_penalty_k)
- pscore = penalty * score
- # window penalty
- pscore = pscore * (1 - self.track_window_influence) + \
- self.window * self.track_window_influence
- best_idx = np.argmax(pscore)
- bbox = pred_bbox[:, best_idx] / scale_z
- lr = penalty[best_idx] * score[best_idx] * self.track_lr
- cpx, cpy = self.center_pos
- x,y,w,h = bbox
- cx = x + cpx
- cy = y + cpy
- # smooth bbox
- width = self.w * (1 - lr) + w * lr
- height = self.h * (1 - lr) + h * lr
- # clip boundary
- cx, cy, width, height = self._bbox_clip(cx, cy, width, height, img.shape[:2])
- # update state
- self.center_pos = np.array([cx, cy])
- self.w = width
- self.h = height
- bbox = [cx - width / 2, cy - height / 2, width, height]
- best_score = score[best_idx]
- return {'bbox': bbox, 'best_score': best_score}
- def get_frames(video_name):
- """
- Args:
- Path to input video frame
- Return:
- Frame
- """
- cap = cv.VideoCapture(video_name if video_name else 0)
- while True:
- ret, frame = cap.read()
- if ret:
- yield frame
- else:
- break
- def main():
- """ Sample SiamRPN Tracker
- """
- # Computation backends supported by layers
- backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
- cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
- # Target Devices for computation
- targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
- cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
- parser = argparse.ArgumentParser(description='Use this script to run SiamRPN++ Visual Tracker',
- formatter_class=argparse.ArgumentDefaultsHelpFormatter)
- parser.add_argument('--input_video', type=str, help='Path to input video file. Skip this argument to capture frames from a camera.')
- parser.add_argument('--target_net', type=str, default='target_net.onnx', help='Path to part of SiamRPN++ ran on target frame.')
- parser.add_argument('--search_net', type=str, default='search_net.onnx', help='Path to part of SiamRPN++ ran on search frame.')
- parser.add_argument('--rpn_head', type=str, default='rpn_head.onnx', help='Path to RPN Head ONNX model.')
- parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
- help="Select a computation backend: "
- "%d: automatically (by default), "
- "%d: Halide, "
- "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
- "%d: OpenCV Implementation, "
- "%d: VKCOM, "
- "%d: CUDA" % backends)
- parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
- help='Select a target device: '
- '%d: CPU target (by default), '
- '%d: OpenCL, '
- '%d: OpenCL FP16, '
- '%d: Myriad, '
- '%d: Vulkan, '
- '%d: CUDA, '
- '%d: CUDA fp16 (half-float preprocess)' % targets)
- args, _ = parser.parse_known_args()
- if args.input_video and not os.path.isfile(args.input_video):
- raise OSError("Input video file does not exist")
- if not os.path.isfile(args.target_net):
- raise OSError("Target Net does not exist")
- if not os.path.isfile(args.search_net):
- raise OSError("Search Net does not exist")
- if not os.path.isfile(args.rpn_head):
- raise OSError("RPN Head Net does not exist")
- #Load the Networks
- target_net = cv.dnn.readNetFromONNX(args.target_net)
- target_net.setPreferableBackend(args.backend)
- target_net.setPreferableTarget(args.target)
- search_net = cv.dnn.readNetFromONNX(args.search_net)
- search_net.setPreferableBackend(args.backend)
- search_net.setPreferableTarget(args.target)
- rpn_head = cv.dnn.readNetFromONNX(args.rpn_head)
- rpn_head.setPreferableBackend(args.backend)
- rpn_head.setPreferableTarget(args.target)
- model = ModelBuilder(target_net, search_net, rpn_head)
- tracker = SiamRPNTracker(model)
- first_frame = True
- cv.namedWindow('SiamRPN++ Tracker', cv.WINDOW_AUTOSIZE)
- for frame in get_frames(args.input_video):
- if first_frame:
- try:
- init_rect = cv.selectROI('SiamRPN++ Tracker', frame, False, False)
- except:
- exit()
- tracker.init(frame, init_rect)
- first_frame = False
- else:
- outputs = tracker.track(frame)
- bbox = list(map(int, outputs['bbox']))
- x,y,w,h = bbox
- cv.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 3)
- cv.imshow('SiamRPN++ Tracker', frame)
- key = cv.waitKey(1)
- if key == ord("q"):
- break
- if __name__ == '__main__':
- main()
|