123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- import argparse
- import numpy as np
- import cv2 as cv
- def str2bool(v):
- if v.lower() in ['on', 'yes', 'true', 'y', 't']:
- return True
- elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
- return False
- else:
- raise NotImplementedError
- parser = argparse.ArgumentParser()
- parser.add_argument('--image1', '-i1', type=str, help='Path to the input image1. Omit for detecting on default camera.')
- parser.add_argument('--image2', '-i2', type=str, help='Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm.')
- parser.add_argument('--video', '-v', type=str, help='Path to the input video.')
- parser.add_argument('--scale', '-sc', type=float, default=1.0, help='Scale factor used to resize input video frames.')
- parser.add_argument('--face_detection_model', '-fd', type=str, default='face_detection_yunet_2021dec.onnx', help='Path to the face detection model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet')
- parser.add_argument('--face_recognition_model', '-fr', type=str, default='face_recognition_sface_2021dec.onnx', help='Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface')
- parser.add_argument('--score_threshold', type=float, default=0.9, help='Filtering out faces of score < score_threshold.')
- parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.')
- parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.')
- parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.')
- args = parser.parse_args()
- def visualize(input, faces, fps, thickness=2):
- if faces[1] is not None:
- for idx, face in enumerate(faces[1]):
- print('Face {}, top-left coordinates: ({:.0f}, {:.0f}), box width: {:.0f}, box height {:.0f}, score: {:.2f}'.format(idx, face[0], face[1], face[2], face[3], face[-1]))
- coords = face[:-1].astype(np.int32)
- cv.rectangle(input, (coords[0], coords[1]), (coords[0]+coords[2], coords[1]+coords[3]), (0, 255, 0), thickness)
- cv.circle(input, (coords[4], coords[5]), 2, (255, 0, 0), thickness)
- cv.circle(input, (coords[6], coords[7]), 2, (0, 0, 255), thickness)
- cv.circle(input, (coords[8], coords[9]), 2, (0, 255, 0), thickness)
- cv.circle(input, (coords[10], coords[11]), 2, (255, 0, 255), thickness)
- cv.circle(input, (coords[12], coords[13]), 2, (0, 255, 255), thickness)
- cv.putText(input, 'FPS: {:.2f}'.format(fps), (1, 16), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
- if __name__ == '__main__':
- ## [initialize_FaceDetectorYN]
- detector = cv.FaceDetectorYN.create(
- args.face_detection_model,
- "",
- (320, 320),
- args.score_threshold,
- args.nms_threshold,
- args.top_k
- )
- ## [initialize_FaceDetectorYN]
- tm = cv.TickMeter()
- # If input is an image
- if args.image1 is not None:
- img1 = cv.imread(cv.samples.findFile(args.image1))
- img1Width = int(img1.shape[1]*args.scale)
- img1Height = int(img1.shape[0]*args.scale)
- img1 = cv.resize(img1, (img1Width, img1Height))
- tm.start()
- ## [inference]
- # Set input size before inference
- detector.setInputSize((img1Width, img1Height))
- faces1 = detector.detect(img1)
- ## [inference]
- tm.stop()
- assert faces1[1] is not None, 'Cannot find a face in {}'.format(args.image1)
- # Draw results on the input image
- visualize(img1, faces1, tm.getFPS())
- # Save results if save is true
- if args.save:
- print('Results saved to result.jpg\n')
- cv.imwrite('result.jpg', img1)
- # Visualize results in a new window
- cv.imshow("image1", img1)
- if args.image2 is not None:
- img2 = cv.imread(cv.samples.findFile(args.image2))
- tm.reset()
- tm.start()
- detector.setInputSize((img2.shape[1], img2.shape[0]))
- faces2 = detector.detect(img2)
- tm.stop()
- assert faces2[1] is not None, 'Cannot find a face in {}'.format(args.image2)
- visualize(img2, faces2, tm.getFPS())
- cv.imshow("image2", img2)
- ## [initialize_FaceRecognizerSF]
- recognizer = cv.FaceRecognizerSF.create(
- args.face_recognition_model,"")
- ## [initialize_FaceRecognizerSF]
- ## [facerecognizer]
- # Align faces
- face1_align = recognizer.alignCrop(img1, faces1[1][0])
- face2_align = recognizer.alignCrop(img2, faces2[1][0])
- # Extract features
- face1_feature = recognizer.feature(face1_align)
- face2_feature = recognizer.feature(face2_align)
- ## [facerecognizer]
- cosine_similarity_threshold = 0.363
- l2_similarity_threshold = 1.128
- ## [match]
- cosine_score = recognizer.match(face1_feature, face2_feature, cv.FaceRecognizerSF_FR_COSINE)
- l2_score = recognizer.match(face1_feature, face2_feature, cv.FaceRecognizerSF_FR_NORM_L2)
- ## [match]
- msg = 'different identities'
- if cosine_score >= cosine_similarity_threshold:
- msg = 'the same identity'
- print('They have {}. Cosine Similarity: {}, threshold: {} (higher value means higher similarity, max 1.0).'.format(msg, cosine_score, cosine_similarity_threshold))
- msg = 'different identities'
- if l2_score <= l2_similarity_threshold:
- msg = 'the same identity'
- print('They have {}. NormL2 Distance: {}, threshold: {} (lower value means higher similarity, min 0.0).'.format(msg, l2_score, l2_similarity_threshold))
- cv.waitKey(0)
- else: # Omit input to call default camera
- if args.video is not None:
- deviceId = args.video
- else:
- deviceId = 0
- cap = cv.VideoCapture(deviceId)
- frameWidth = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)*args.scale)
- frameHeight = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)*args.scale)
- detector.setInputSize([frameWidth, frameHeight])
- while cv.waitKey(1) < 0:
- hasFrame, frame = cap.read()
- if not hasFrame:
- print('No frames grabbed!')
- break
- frame = cv.resize(frame, (frameWidth, frameHeight))
- # Inference
- tm.start()
- faces = detector.detect(frame) # faces is a tuple
- tm.stop()
- # Draw results on the input image
- visualize(frame, faces, tm.getFPS())
- # Visualize results
- cv.imshow('Live', frame)
- cv.destroyAllWindows()
|