12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052 |
- #ifndef YOLO_V2_CLASS_HPP
- #define YOLO_V2_CLASS_HPP
- #ifndef LIB_API
- #ifdef LIB_EXPORTS
- #if defined(_MSC_VER)
- #define LIB_API __declspec(dllexport)
- #else
- #define LIB_API __attribute__((visibility("default")))
- #endif
- #else
- #if defined(_MSC_VER)
- #define LIB_API
- #else
- #define LIB_API
- #endif
- #endif
- #endif
- #define C_SHARP_MAX_OBJECTS 1000
- struct bbox_t {
- unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
- float prob; // confidence - probability that the object was found correctly
- unsigned int obj_id; // class of object - from range [0, classes-1]
- unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
- unsigned int frames_counter; // counter of frames on which the object was detected
- float x_3d, y_3d, z_3d; // center of object (in Meters) if ZED 3D Camera is used
- };
- struct image_t {
- int h; // height
- int w; // width
- int c; // number of chanels (3 - for RGB)
- float *data; // pointer to the image data
- };
- struct bbox_t_container {
- bbox_t candidates[C_SHARP_MAX_OBJECTS];
- };
- #ifdef __cplusplus
- #include <memory>
- #include <vector>
- #include <deque>
- #include <algorithm>
- #include <chrono>
- #include <string>
- #include <sstream>
- #include <iostream>
- #include <cmath>
- #ifdef OPENCV
- #include <opencv2/opencv.hpp> // C++
- #include <opencv2/highgui/highgui_c.h> // C
- #include <opencv2/imgproc/imgproc_c.h> // C
- #endif
- extern "C" LIB_API int init(const char *configurationFilename, const char *weightsFilename, int gpu);
- extern "C" LIB_API int detect_image(const char *filename, bbox_t_container &container);
- extern "C" LIB_API int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container);
- extern "C" LIB_API int dispose();
- extern "C" LIB_API int get_device_count();
- extern "C" LIB_API int get_device_name(int gpu, char* deviceName);
- extern "C" LIB_API bool built_with_cuda();
- extern "C" LIB_API bool built_with_cudnn();
- extern "C" LIB_API bool built_with_opencv();
- extern "C" LIB_API void send_json_custom(char const* send_buf, int port, int timeout);
- class Detector {
- std::shared_ptr<void> detector_gpu_ptr;
- std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
- public:
- const int cur_gpu_id;
- float nms = .4;
- bool wait_stream;
- LIB_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
- LIB_API ~Detector();
- LIB_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
- LIB_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
- static LIB_API image_t load_image(std::string image_filename);
- static LIB_API void free_image(image_t m);
- LIB_API int get_net_width() const;
- LIB_API int get_net_height() const;
- LIB_API int get_net_color_depth() const;
- LIB_API std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
- int const frames_story = 5, int const max_dist = 40);
- LIB_API void *get_cuda_context();
- //LIB_API bool send_json_http(std::vector<bbox_t> cur_bbox_vec, std::vector<std::string> obj_names, int frame_id,
- // std::string filename = std::string(), int timeout = 400000, int port = 8070);
- std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
- {
- if (img.data == NULL)
- throw std::runtime_error("Image is empty");
- auto detection_boxes = detect(img, thresh, use_mean);
- float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
- for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
- return detection_boxes;
- }
- #ifdef OPENCV
- std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
- {
- if(mat.data == NULL)
- throw std::runtime_error("Image is empty");
- auto image_ptr = mat_to_image_resize(mat);
- return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
- }
- std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
- {
- if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
- cv::Size network_size = cv::Size(get_net_width(), get_net_height());
- cv::Mat det_mat;
- if (mat.size() != network_size)
- cv::resize(mat, det_mat, network_size);
- else
- det_mat = mat; // only reference is copied
- return mat_to_image(det_mat);
- }
- static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
- {
- cv::Mat img;
- if (img_src.channels() == 4) cv::cvtColor(img_src, img, cv::COLOR_RGBA2BGR);
- else if (img_src.channels() == 3) cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
- else if (img_src.channels() == 1) cv::cvtColor(img_src, img, cv::COLOR_GRAY2BGR);
- else std::cerr << " Warning: img_src.channels() is not 1, 3 or 4. It is = " << img_src.channels() << std::endl;
- std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
- *image_ptr = mat_to_image_custom(img);
- return image_ptr;
- }
- private:
- static image_t mat_to_image_custom(cv::Mat mat)
- {
- int w = mat.cols;
- int h = mat.rows;
- int c = mat.channels();
- image_t im = make_image_custom(w, h, c);
- unsigned char *data = (unsigned char *)mat.data;
- int step = mat.step;
- for (int y = 0; y < h; ++y) {
- for (int k = 0; k < c; ++k) {
- for (int x = 0; x < w; ++x) {
- im.data[k*w*h + y*w + x] = data[y*step + x*c + k] / 255.0f;
- }
- }
- }
- return im;
- }
- static image_t make_empty_image(int w, int h, int c)
- {
- image_t out;
- out.data = 0;
- out.h = h;
- out.w = w;
- out.c = c;
- return out;
- }
- static image_t make_image_custom(int w, int h, int c)
- {
- image_t out = make_empty_image(w, h, c);
- out.data = (float *)calloc(h*w*c, sizeof(float));
- return out;
- }
- #endif // OPENCV
- public:
- bool send_json_http(std::vector<bbox_t> cur_bbox_vec, std::vector<std::string> obj_names, int frame_id,
- std::string filename = std::string(), int timeout = 400000, int port = 8070)
- {
- std::string send_str;
- char *tmp_buf = (char *)calloc(1024, sizeof(char));
- if (!filename.empty()) {
- sprintf(tmp_buf, "{\n \"frame_id\":%d, \n \"filename\":\"%s\", \n \"objects\": [ \n", frame_id, filename.c_str());
- }
- else {
- sprintf(tmp_buf, "{\n \"frame_id\":%d, \n \"objects\": [ \n", frame_id);
- }
- send_str = tmp_buf;
- free(tmp_buf);
- for (auto & i : cur_bbox_vec) {
- char *buf = (char *)calloc(2048, sizeof(char));
- sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"absolute_coordinates\":{\"center_x\":%d, \"center_y\":%d, \"width\":%d, \"height\":%d}, \"confidence\":%f",
- i.obj_id, obj_names[i.obj_id].c_str(), i.x, i.y, i.w, i.h, i.prob);
- //sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"relative_coordinates\":{\"center_x\":%f, \"center_y\":%f, \"width\":%f, \"height\":%f}, \"confidence\":%f",
- // i.obj_id, obj_names[i.obj_id], i.x, i.y, i.w, i.h, i.prob);
- send_str += buf;
- if (!std::isnan(i.z_3d)) {
- sprintf(buf, "\n , \"coordinates_in_meters\":{\"x_3d\":%.2f, \"y_3d\":%.2f, \"z_3d\":%.2f}",
- i.x_3d, i.y_3d, i.z_3d);
- send_str += buf;
- }
- send_str += "}\n";
- free(buf);
- }
- //send_str += "\n ] \n}, \n";
- send_str += "\n ] \n}";
- send_json_custom(send_str.c_str(), port, timeout);
- return true;
- }
- };
- // --------------------------------------------------------------------------------
- #if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
- #include <opencv2/cudaoptflow.hpp>
- #include <opencv2/cudaimgproc.hpp>
- #include <opencv2/cudaarithm.hpp>
- #include <opencv2/core/cuda.hpp>
- class Tracker_optflow {
- public:
- const int gpu_count;
- const int gpu_id;
- const int flow_error;
- Tracker_optflow(int _gpu_id = 0, int win_size = 15, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
- gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
- flow_error((_flow_error > 0)? _flow_error:(win_size*4))
- {
- int const old_gpu_id = cv::cuda::getDevice();
- cv::cuda::setDevice(gpu_id);
- stream = cv::cuda::Stream();
- sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
- sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
- sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level); // +- 3 pt
- sync_PyrLKOpticalFlow_gpu->setNumIters(iterations); // 2000, def: 30
- cv::cuda::setDevice(old_gpu_id);
- }
- // just to avoid extra allocations
- cv::cuda::GpuMat src_mat_gpu;
- cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
- cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
- cv::cuda::GpuMat status_gpu, err_gpu;
- cv::cuda::GpuMat src_grey_gpu; // used in both functions
- cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
- cv::cuda::Stream stream;
- std::vector<bbox_t> cur_bbox_vec;
- std::vector<bool> good_bbox_vec_flags;
- cv::Mat prev_pts_flow_cpu;
- void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
- {
- cur_bbox_vec = _cur_bbox_vec;
- good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
- cv::Mat prev_pts, cur_pts_flow_cpu;
- for (auto &i : cur_bbox_vec) {
- float x_center = (i.x + i.w / 2.0F);
- float y_center = (i.y + i.h / 2.0F);
- prev_pts.push_back(cv::Point2f(x_center, y_center));
- }
- if (prev_pts.rows == 0)
- prev_pts_flow_cpu = cv::Mat();
- else
- cv::transpose(prev_pts, prev_pts_flow_cpu);
- if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
- prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
- cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
- status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
- err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
- }
- prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
- }
- void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
- {
- int const old_gpu_id = cv::cuda::getDevice();
- if (old_gpu_id != gpu_id)
- cv::cuda::setDevice(gpu_id);
- if (src_mat.channels() == 1 || src_mat.channels() == 3 || src_mat.channels() == 4) {
- if (src_mat_gpu.cols == 0) {
- src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
- src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
- }
- if (src_mat.channels() == 1) {
- src_mat_gpu.upload(src_mat, stream);
- src_mat_gpu.copyTo(src_grey_gpu);
- }
- else if (src_mat.channels() == 3) {
- src_mat_gpu.upload(src_mat, stream);
- cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
- }
- else if (src_mat.channels() == 4) {
- src_mat_gpu.upload(src_mat, stream);
- cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGRA2GRAY, 1, stream);
- }
- else {
- std::cerr << " Warning: src_mat.channels() is not: 1, 3 or 4. It is = " << src_mat.channels() << " \n";
- return;
- }
- }
- update_cur_bbox_vec(_cur_bbox_vec);
- if (old_gpu_id != gpu_id)
- cv::cuda::setDevice(old_gpu_id);
- }
- std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
- {
- if (sync_PyrLKOpticalFlow_gpu.empty()) {
- std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
- return cur_bbox_vec;
- }
- int const old_gpu_id = cv::cuda::getDevice();
- if(old_gpu_id != gpu_id)
- cv::cuda::setDevice(gpu_id);
- if (dst_mat_gpu.cols == 0) {
- dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
- dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
- }
- //dst_grey_gpu.upload(dst_mat, stream); // use BGR
- dst_mat_gpu.upload(dst_mat, stream);
- cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
- if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
- stream.waitForCompletion();
- src_grey_gpu = dst_grey_gpu.clone();
- cv::cuda::setDevice(old_gpu_id);
- return cur_bbox_vec;
- }
- ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
- sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x
- cv::Mat cur_pts_flow_cpu;
- cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
- dst_grey_gpu.copyTo(src_grey_gpu, stream);
- cv::Mat err_cpu, status_cpu;
- err_gpu.download(err_cpu, stream);
- status_gpu.download(status_cpu, stream);
- stream.waitForCompletion();
- std::vector<bbox_t> result_bbox_vec;
- if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size())
- {
- for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
- {
- cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
- cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
- float moved_x = cur_key_pt.x - prev_key_pt.x;
- float moved_y = cur_key_pt.y - prev_key_pt.y;
- if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
- if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 &&
- ((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
- {
- cur_bbox_vec[i].x += moved_x + 0.5;
- cur_bbox_vec[i].y += moved_y + 0.5;
- result_bbox_vec.push_back(cur_bbox_vec[i]);
- }
- else good_bbox_vec_flags[i] = false;
- else good_bbox_vec_flags[i] = false;
- //if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
- }
- }
- cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
- cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
- if (old_gpu_id != gpu_id)
- cv::cuda::setDevice(old_gpu_id);
- return result_bbox_vec;
- }
- };
- #elif defined(TRACK_OPTFLOW) && defined(OPENCV)
- //#include <opencv2/optflow.hpp>
- #include <opencv2/video/tracking.hpp>
- class Tracker_optflow {
- public:
- const int flow_error;
- Tracker_optflow(int win_size = 15, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
- flow_error((_flow_error > 0)? _flow_error:(win_size*4))
- {
- sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
- sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
- sync_PyrLKOpticalFlow->setMaxLevel(max_level); // +- 3 pt
- }
- // just to avoid extra allocations
- cv::Mat dst_grey;
- cv::Mat prev_pts_flow, cur_pts_flow;
- cv::Mat status, err;
- cv::Mat src_grey; // used in both functions
- cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow;
- std::vector<bbox_t> cur_bbox_vec;
- std::vector<bool> good_bbox_vec_flags;
- void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
- {
- cur_bbox_vec = _cur_bbox_vec;
- good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
- cv::Mat prev_pts, cur_pts_flow;
- for (auto &i : cur_bbox_vec) {
- float x_center = (i.x + i.w / 2.0F);
- float y_center = (i.y + i.h / 2.0F);
- prev_pts.push_back(cv::Point2f(x_center, y_center));
- }
- if (prev_pts.rows == 0)
- prev_pts_flow = cv::Mat();
- else
- cv::transpose(prev_pts, prev_pts_flow);
- }
- void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
- {
- if (new_src_mat.channels() == 1) {
- src_grey = new_src_mat.clone();
- }
- else if (new_src_mat.channels() == 3) {
- cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
- }
- else if (new_src_mat.channels() == 4) {
- cv::cvtColor(new_src_mat, src_grey, CV_BGRA2GRAY, 1);
- }
- else {
- std::cerr << " Warning: new_src_mat.channels() is not: 1, 3 or 4. It is = " << new_src_mat.channels() << " \n";
- return;
- }
- update_cur_bbox_vec(_cur_bbox_vec);
- }
- std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true)
- {
- if (sync_PyrLKOpticalFlow.empty()) {
- std::cout << "sync_PyrLKOpticalFlow isn't initialized \n";
- return cur_bbox_vec;
- }
- cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1);
- if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
- src_grey = dst_grey.clone();
- //std::cerr << " Warning: src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols \n";
- return cur_bbox_vec;
- }
- if (prev_pts_flow.cols < 1) {
- return cur_bbox_vec;
- }
- ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
- sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err); // OpenCV 3.x
- dst_grey.copyTo(src_grey);
- std::vector<bbox_t> result_bbox_vec;
- if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size())
- {
- for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
- {
- cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i);
- cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i);
- float moved_x = cur_key_pt.x - prev_key_pt.x;
- float moved_y = cur_key_pt.y - prev_key_pt.y;
- if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
- if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 &&
- ((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
- {
- cur_bbox_vec[i].x += moved_x + 0.5;
- cur_bbox_vec[i].y += moved_y + 0.5;
- result_bbox_vec.push_back(cur_bbox_vec[i]);
- }
- else good_bbox_vec_flags[i] = false;
- else good_bbox_vec_flags[i] = false;
- //if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
- }
- }
- prev_pts_flow = cur_pts_flow.clone();
- return result_bbox_vec;
- }
- };
- #else
- class Tracker_optflow {};
- #endif // defined(TRACK_OPTFLOW) && defined(OPENCV)
- #ifdef OPENCV
- static cv::Scalar obj_id_to_color(int obj_id) {
- int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
- int const offset = obj_id * 123457 % 6;
- int const color_scale = 150 + (obj_id * 123457) % 100;
- cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]);
- color *= color_scale;
- return color;
- }
- class preview_boxes_t {
- enum { frames_history = 30 }; // how long to keep the history saved
- struct preview_box_track_t {
- unsigned int track_id, obj_id, last_showed_frames_ago;
- bool current_detection;
- bbox_t bbox;
- cv::Mat mat_obj, mat_resized_obj;
- preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {}
- };
- std::vector<preview_box_track_t> preview_box_track_id;
- size_t const preview_box_size, bottom_offset;
- bool const one_off_detections;
- public:
- preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) :
- preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections)
- {}
- void set(cv::Mat src_mat, std::vector<bbox_t> result_vec)
- {
- size_t const count_preview_boxes = src_mat.cols / preview_box_size;
- if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes);
- // increment frames history
- for (auto &i : preview_box_track_id)
- i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1);
- // occupy empty boxes
- for (auto &k : result_vec) {
- bool found = false;
- // find the same (track_id)
- for (auto &i : preview_box_track_id) {
- if (i.track_id == k.track_id) {
- if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects
- found = true;
- break;
- }
- }
- if (!found) {
- // find empty box
- for (auto &i : preview_box_track_id) {
- if (i.last_showed_frames_ago == frames_history) {
- if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet
- i.track_id = k.track_id;
- i.obj_id = k.obj_id;
- i.bbox = k;
- i.last_showed_frames_ago = 0;
- break;
- }
- }
- }
- }
- // draw preview box (from old or current frame)
- for (size_t i = 0; i < preview_box_track_id.size(); ++i)
- {
- // get object image
- cv::Mat dst = preview_box_track_id[i].mat_resized_obj;
- preview_box_track_id[i].current_detection = false;
- for (auto &k : result_vec) {
- if (preview_box_track_id[i].track_id == k.track_id) {
- if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) {
- preview_box_track_id[i].last_showed_frames_ago = frames_history; break;
- }
- bbox_t b = k;
- cv::Rect r(b.x, b.y, b.w, b.h);
- cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size());
- cv::Rect rect_roi = r & img_rect;
- if (rect_roi.width > 1 || rect_roi.height > 1) {
- cv::Mat roi = src_mat(rect_roi);
- cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST);
- preview_box_track_id[i].mat_obj = roi.clone();
- preview_box_track_id[i].mat_resized_obj = dst.clone();
- preview_box_track_id[i].current_detection = true;
- preview_box_track_id[i].bbox = k;
- }
- break;
- }
- }
- }
- }
- void draw(cv::Mat draw_mat, bool show_small_boxes = false)
- {
- // draw preview box (from old or current frame)
- for (size_t i = 0; i < preview_box_track_id.size(); ++i)
- {
- auto &prev_box = preview_box_track_id[i];
- // draw object image
- cv::Mat dst = prev_box.mat_resized_obj;
- if (prev_box.last_showed_frames_ago < frames_history &&
- dst.size() == cv::Size(preview_box_size, preview_box_size))
- {
- cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size());
- cv::Mat dst_roi = draw_mat(dst_rect_roi);
- dst.copyTo(dst_roi);
- cv::Scalar color = obj_id_to_color(prev_box.obj_id);
- int thickness = (prev_box.current_detection) ? 5 : 1;
- cv::rectangle(draw_mat, dst_rect_roi, color, thickness);
- unsigned int const track_id = prev_box.track_id;
- std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : "";
- putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2);
- std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h);
- putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
- if (!one_off_detections && prev_box.current_detection) {
- cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0),
- cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h),
- color);
- }
- if (one_off_detections && show_small_boxes) {
- cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y),
- cv::Size(prev_box.bbox.w, prev_box.bbox.h));
- unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history;
- color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history);
- if (prev_box.mat_obj.size() == src_rect_roi.size()) {
- prev_box.mat_obj.copyTo(draw_mat(src_rect_roi));
- }
- cv::rectangle(draw_mat, src_rect_roi, color, thickness);
- putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
- }
- }
- }
- }
- };
- class track_kalman_t
- {
- int track_id_counter;
- std::chrono::steady_clock::time_point global_last_time;
- float dT;
- public:
- int max_objects; // max objects for tracking
- int min_frames; // min frames to consider an object as detected
- const float max_dist; // max distance (in px) to track with the same ID
- cv::Size img_size; // max value of x,y,w,h
- struct tst_t {
- int track_id;
- int state_id;
- std::chrono::steady_clock::time_point last_time;
- int detection_count;
- tst_t() : track_id(-1), state_id(-1) {}
- };
- std::vector<tst_t> track_id_state_id_time;
- std::vector<bbox_t> result_vec_pred;
- struct one_kalman_t;
- std::vector<one_kalman_t> kalman_vec;
- struct one_kalman_t
- {
- cv::KalmanFilter kf;
- cv::Mat state;
- cv::Mat meas;
- int measSize, stateSize, contrSize;
- void set_delta_time(float dT) {
- kf.transitionMatrix.at<float>(2) = dT;
- kf.transitionMatrix.at<float>(9) = dT;
- }
- void set(bbox_t box)
- {
- initialize_kalman();
- kf.errorCovPre.at<float>(0) = 1; // px
- kf.errorCovPre.at<float>(7) = 1; // px
- kf.errorCovPre.at<float>(14) = 1;
- kf.errorCovPre.at<float>(21) = 1;
- kf.errorCovPre.at<float>(28) = 1; // px
- kf.errorCovPre.at<float>(35) = 1; // px
- state.at<float>(0) = box.x;
- state.at<float>(1) = box.y;
- state.at<float>(2) = 0;
- state.at<float>(3) = 0;
- state.at<float>(4) = box.w;
- state.at<float>(5) = box.h;
- // <<<< Initialization
- kf.statePost = state;
- }
- // Kalman.correct() calculates: statePost = statePre + gain * (z(k)-measurementMatrix*statePre);
- // corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
- void correct(bbox_t box) {
- meas.at<float>(0) = box.x;
- meas.at<float>(1) = box.y;
- meas.at<float>(2) = box.w;
- meas.at<float>(3) = box.h;
- kf.correct(meas);
- bbox_t new_box = predict();
- if (new_box.w == 0 || new_box.h == 0) {
- set(box);
- //std::cerr << " force set(): track_id = " << box.track_id <<
- // ", x = " << box.x << ", y = " << box.y << ", w = " << box.w << ", h = " << box.h << std::endl;
- }
- }
- // Kalman.predict() calculates: statePre = TransitionMatrix * statePost;
- // predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
- bbox_t predict() {
- bbox_t box;
- state = kf.predict();
- box.x = state.at<float>(0);
- box.y = state.at<float>(1);
- box.w = state.at<float>(4);
- box.h = state.at<float>(5);
- return box;
- }
- void initialize_kalman()
- {
- kf = cv::KalmanFilter(stateSize, measSize, contrSize, CV_32F);
- // Transition State Matrix A
- // Note: set dT at each processing step!
- // [ 1 0 dT 0 0 0 ]
- // [ 0 1 0 dT 0 0 ]
- // [ 0 0 1 0 0 0 ]
- // [ 0 0 0 1 0 0 ]
- // [ 0 0 0 0 1 0 ]
- // [ 0 0 0 0 0 1 ]
- cv::setIdentity(kf.transitionMatrix);
- // Measure Matrix H
- // [ 1 0 0 0 0 0 ]
- // [ 0 1 0 0 0 0 ]
- // [ 0 0 0 0 1 0 ]
- // [ 0 0 0 0 0 1 ]
- kf.measurementMatrix = cv::Mat::zeros(measSize, stateSize, CV_32F);
- kf.measurementMatrix.at<float>(0) = 1.0f;
- kf.measurementMatrix.at<float>(7) = 1.0f;
- kf.measurementMatrix.at<float>(16) = 1.0f;
- kf.measurementMatrix.at<float>(23) = 1.0f;
- // Process Noise Covariance Matrix Q - result smoother with lower values (1e-2)
- // [ Ex 0 0 0 0 0 ]
- // [ 0 Ey 0 0 0 0 ]
- // [ 0 0 Ev_x 0 0 0 ]
- // [ 0 0 0 Ev_y 0 0 ]
- // [ 0 0 0 0 Ew 0 ]
- // [ 0 0 0 0 0 Eh ]
- //cv::setIdentity(kf.processNoiseCov, cv::Scalar(1e-3));
- kf.processNoiseCov.at<float>(0) = 1e-2;
- kf.processNoiseCov.at<float>(7) = 1e-2;
- kf.processNoiseCov.at<float>(14) = 1e-2;// 5.0f;
- kf.processNoiseCov.at<float>(21) = 1e-2;// 5.0f;
- kf.processNoiseCov.at<float>(28) = 5e-3;
- kf.processNoiseCov.at<float>(35) = 5e-3;
- // Measures Noise Covariance Matrix R - result smoother with higher values (1e-1)
- cv::setIdentity(kf.measurementNoiseCov, cv::Scalar(1e-1));
- //cv::setIdentity(kf.errorCovPost, cv::Scalar::all(1e-2));
- // <<<< Kalman Filter
- set_delta_time(0);
- }
- one_kalman_t(int _stateSize = 6, int _measSize = 4, int _contrSize = 0) :
- kf(_stateSize, _measSize, _contrSize, CV_32F), measSize(_measSize), stateSize(_stateSize), contrSize(_contrSize)
- {
- state = cv::Mat(stateSize, 1, CV_32F); // [x,y,v_x,v_y,w,h]
- meas = cv::Mat(measSize, 1, CV_32F); // [z_x,z_y,z_w,z_h]
- //cv::Mat procNoise(stateSize, 1, type)
- // [E_x,E_y,E_v_x,E_v_y,E_w,E_h]
- initialize_kalman();
- }
- };
- // ------------------------------------------
- track_kalman_t(int _max_objects = 1000, int _min_frames = 3, float _max_dist = 40, cv::Size _img_size = cv::Size(10000, 10000)) :
- max_objects(_max_objects), min_frames(_min_frames), max_dist(_max_dist), img_size(_img_size),
- track_id_counter(0)
- {
- kalman_vec.resize(max_objects);
- track_id_state_id_time.resize(max_objects);
- result_vec_pred.resize(max_objects);
- }
- float calc_dt() {
- dT = std::chrono::duration<double>(std::chrono::steady_clock::now() - global_last_time).count();
- return dT;
- }
- static float get_distance(float src_x, float src_y, float dst_x, float dst_y) {
- return sqrtf((src_x - dst_x)*(src_x - dst_x) + (src_y - dst_y)*(src_y - dst_y));
- }
- void clear_old_states() {
- // clear old bboxes
- for (size_t state_id = 0; state_id < track_id_state_id_time.size(); ++state_id)
- {
- float time_sec = std::chrono::duration<double>(std::chrono::steady_clock::now() - track_id_state_id_time[state_id].last_time).count();
- float time_wait = 0.5; // 0.5 second
- if (track_id_state_id_time[state_id].track_id > -1)
- {
- if ((result_vec_pred[state_id].x > img_size.width) ||
- (result_vec_pred[state_id].y > img_size.height))
- {
- track_id_state_id_time[state_id].track_id = -1;
- }
- if (time_sec >= time_wait || track_id_state_id_time[state_id].detection_count < 0) {
- //std::cerr << " remove track_id = " << track_id_state_id_time[state_id].track_id << ", state_id = " << state_id << std::endl;
- track_id_state_id_time[state_id].track_id = -1; // remove bbox
- }
- }
- }
- }
- tst_t get_state_id(bbox_t find_box, std::vector<bool> &busy_vec)
- {
- tst_t tst;
- tst.state_id = -1;
- float min_dist = std::numeric_limits<float>::max();
- for (size_t i = 0; i < max_objects; ++i)
- {
- if (track_id_state_id_time[i].track_id > -1 && result_vec_pred[i].obj_id == find_box.obj_id && busy_vec[i] == false)
- {
- bbox_t pred_box = result_vec_pred[i];
- float dist = get_distance(pred_box.x, pred_box.y, find_box.x, find_box.y);
- float movement_dist = std::max(max_dist, static_cast<float>(std::max(pred_box.w, pred_box.h)) );
- if ((dist < movement_dist) && (dist < min_dist)) {
- min_dist = dist;
- tst.state_id = i;
- }
- }
- }
- if (tst.state_id > -1) {
- track_id_state_id_time[tst.state_id].last_time = std::chrono::steady_clock::now();
- track_id_state_id_time[tst.state_id].detection_count = std::max(track_id_state_id_time[tst.state_id].detection_count + 2, 10);
- tst = track_id_state_id_time[tst.state_id];
- busy_vec[tst.state_id] = true;
- }
- else {
- //std::cerr << " Didn't find: obj_id = " << find_box.obj_id << ", x = " << find_box.x << ", y = " << find_box.y <<
- // ", track_id_counter = " << track_id_counter << std::endl;
- }
- return tst;
- }
- tst_t new_state_id(std::vector<bool> &busy_vec)
- {
- tst_t tst;
- // find empty cell to add new track_id
- auto it = std::find_if(track_id_state_id_time.begin(), track_id_state_id_time.end(), [&](tst_t &v) { return v.track_id == -1; });
- if (it != track_id_state_id_time.end()) {
- it->state_id = it - track_id_state_id_time.begin();
- //it->track_id = track_id_counter++;
- it->track_id = 0;
- it->last_time = std::chrono::steady_clock::now();
- it->detection_count = 1;
- tst = *it;
- busy_vec[it->state_id] = true;
- }
- return tst;
- }
- std::vector<tst_t> find_state_ids(std::vector<bbox_t> result_vec)
- {
- std::vector<tst_t> tst_vec(result_vec.size());
- std::vector<bool> busy_vec(max_objects, false);
- for (size_t i = 0; i < result_vec.size(); ++i)
- {
- tst_t tst = get_state_id(result_vec[i], busy_vec);
- int state_id = tst.state_id;
- int track_id = tst.track_id;
- // if new state_id
- if (state_id < 0) {
- tst = new_state_id(busy_vec);
- state_id = tst.state_id;
- track_id = tst.track_id;
- if (state_id > -1) {
- kalman_vec[state_id].set(result_vec[i]);
- //std::cerr << " post: ";
- }
- }
- //std::cerr << " track_id = " << track_id << ", state_id = " << state_id <<
- // ", x = " << result_vec[i].x << ", det_count = " << tst.detection_count << std::endl;
- if (state_id > -1) {
- tst_vec[i] = tst;
- result_vec_pred[state_id] = result_vec[i];
- result_vec_pred[state_id].track_id = track_id;
- }
- }
- return tst_vec;
- }
- std::vector<bbox_t> predict()
- {
- clear_old_states();
- std::vector<bbox_t> result_vec;
- for (size_t i = 0; i < max_objects; ++i)
- {
- tst_t tst = track_id_state_id_time[i];
- if (tst.track_id > -1) {
- bbox_t box = kalman_vec[i].predict();
- result_vec_pred[i].x = box.x;
- result_vec_pred[i].y = box.y;
- result_vec_pred[i].w = box.w;
- result_vec_pred[i].h = box.h;
- if (tst.detection_count >= min_frames)
- {
- if (track_id_state_id_time[i].track_id == 0) {
- track_id_state_id_time[i].track_id = ++track_id_counter;
- result_vec_pred[i].track_id = track_id_counter;
- }
- result_vec.push_back(result_vec_pred[i]);
- }
- }
- }
- //std::cerr << " result_vec.size() = " << result_vec.size() << std::endl;
- //global_last_time = std::chrono::steady_clock::now();
- return result_vec;
- }
- std::vector<bbox_t> correct(std::vector<bbox_t> result_vec)
- {
- calc_dt();
- clear_old_states();
- for (size_t i = 0; i < max_objects; ++i)
- track_id_state_id_time[i].detection_count--;
- std::vector<tst_t> tst_vec = find_state_ids(result_vec);
- for (size_t i = 0; i < tst_vec.size(); ++i) {
- tst_t tst = tst_vec[i];
- int state_id = tst.state_id;
- if (state_id > -1)
- {
- kalman_vec[state_id].set_delta_time(dT);
- kalman_vec[state_id].correct(result_vec_pred[state_id]);
- }
- }
- result_vec = predict();
- global_last_time = std::chrono::steady_clock::now();
- return result_vec;
- }
- };
- // ----------------------------------------------
- #endif // OPENCV
- #endif // __cplusplus
- #endif // YOLO_V2_CLASS_HPP
|