123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- /*
- * @Description:
- * @Author: yct
- * @Date: 2021-09-16 15:18:34
- * @LastEditTime: 2021-11-17 15:37:25
- * @LastEditors: yct
- */
- #include "car_pose_detector.h"
- // 变换点云, 反向平移后旋转
- void Car_pose_detector::inv_trans_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_ptr, double x, double y, double theta)
- {
- for (int i = 0; i < cloud_ptr->size(); i++)
- {
- Eigen::Matrix<double, 2, 1> t_point(double(cloud_ptr->points[i].x) - x, double(cloud_ptr->points[i].y) - y);
- Eigen::Rotation2D<double> rotation(theta);
- Eigen::Matrix<double, 2, 2> rotation_matrix = rotation.toRotationMatrix();
- Eigen::Matrix<double, 2, 1> trans_point = rotation_matrix * t_point;
- cloud_ptr->points[i].x = trans_point.x();
- cloud_ptr->points[i].y = trans_point.y();
- }
- }
- // 变换点云,旋转后平移
- void Car_pose_detector::trans_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_ptr, double x, double y, double theta)
- {
- for (int i = 0; i < cloud_ptr->size(); i++)
- {
- Eigen::Matrix<double, 2, 1> t_point(double(cloud_ptr->points[i].x), double(cloud_ptr->points[i].y));
- Eigen::Rotation2D<double> rotation(theta);
- Eigen::Matrix<double, 2, 2> rotation_matrix = rotation.toRotationMatrix();
- Eigen::Matrix<double, 2, 1> trans_point = rotation_matrix * t_point;
- cloud_ptr->points[i].x = trans_point.x()+x;
- cloud_ptr->points[i].y = trans_point.y()+y;
- }
- }
- // 创建两轴具体曲线
- void Car_pose_detector::create_curve_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_ptr, double width)
- {
- for (double x = -2.5; x < 2.5; x += 0.02)
- {
- double left_value = 1.0 / (1.0 + exp(30 * (x + width / 2.0)));
- double right_value = 1.0 / (1.0 + exp(30 * (-x + width / 2.0)));
- double front_value = 1.0 / (1.0 + exp(15 * (x + 2.2)));
- double back_value = 1.0 / (1.0 + exp(15 * (-x + 2.2)));
- cloud_ptr->push_back(pcl::PointXYZ(x, std::max(left_value, right_value) - 3.0, 0.0));
- cloud_ptr->push_back(pcl::PointXYZ(std::max(front_value, back_value) - 2.0, x, 0.0));
- }
- }
- // 代价函数的计算模型
- struct Car_pose_cost
- {
- Car_pose_cost(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr) : m_cloud_ptr(cloud_ptr) {}
- // 残差的计算
- template <typename T>
- bool operator()(
- const T *const vars, // 模型参数,x y theta w
- T *residual) const
- {
- if (m_cloud_ptr == nullptr || m_cloud_ptr->size() <= 0)
- {
- std::cout << "error occured" << std::endl;
- return false;
- }
- const T norm_scale = T(0.002);
- //residual[0] = T(0);
- // residual[1] = T(0);
- // residual[m_cloud_ptr->size()] = T(0.0);
- // 点云loss
- const T width = T(2.0); //vars[3];
-
- char buf[40960]={0};
- // sprintf(buf, "----");
- for (int i = 0; i < m_cloud_ptr->size(); i++)
- {
- Eigen::Matrix<T, 2, 1> t_point(T(m_cloud_ptr->points[i].x) - vars[0], T(m_cloud_ptr->points[i].y) - vars[1]);
- Eigen::Rotation2D<T> rotation(vars[2]);
- Eigen::Matrix<T, 2, 2> rotation_matrix = rotation.toRotationMatrix();
- Eigen::Matrix<T, 2, 1> t_trans_point = rotation_matrix * t_point;
- T left_loss = T(1.0) / (T(1.0) + ceres::exp(T(30.0) * (t_trans_point.x() + width / T(2.0))));
- T right_loss = T(1.0) / (T(1.0) + ceres::exp(T(30.0) * (-t_trans_point.x() + width / T(2.0))));
- T front_loss = T(1.0) / (T(1.0) + ceres::exp(T(15.0) * (t_trans_point.y() + T(2.2))));
- T back_loss = T(1.0) / (T(1.0) + ceres::exp(T(15.0) * (-t_trans_point.y() + T(2.2))));
- residual[i] = left_loss + right_loss + front_loss + back_loss; // + norm_scale * ((left_loss - T(0.5)) + (right_loss - T(0.5)));
- // residual[m_cloud_ptr->size()] += (left_loss - T(0.5)) + (right_loss - T(0.5));
- // if(left_loss > T(0.01))
- // std::cout << "index l r: " << i << ", " << left_loss << ", " << right_loss << ", " << trans_point.x() << std::endl;
- // sprintf(buf + strlen(buf), "%.4f ", residual[i]);
- // if(i%20==8)
- // {
- // sprintf(buf + strlen(buf), "\n");
- // }
- }
- // printf(buf);
- // // 参数L2正则化loss
- // residual[m_cloud_ptr->size()] = T(m_cloud_ptr->size()) * width * norm_scale;
- // residual[1] += ceres::pow(vars[1],2) * norm_scale;
- // residual[1] += ceres::pow(vars[2],2) * norm_scale;
- // residual[1] += ceres::pow((vars[3]-T(1.8)),2) * norm_scale;
- // ((i != 3) ? norm_scale : norm_scale * T(m_cloud_ptr->size()));
- return true;
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr m_cloud_ptr; // x,y数据
- };
- // 公式转图片优化
- #include <ceres/cubic_interpolation.h>
- constexpr float kMinProbability = 0.01f;
- constexpr float kMaxProbability = 1.f - kMinProbability;
- constexpr float kMaxCorrespondenceCost = 1.f - kMinProbability;
- constexpr int kPadding = INT_MAX / 4;
- constexpr float resolutionx = 0.01f;
- constexpr float resolutiony = 0.01f;
- constexpr float min_x = -2.0f;
- constexpr float min_y = -3.0f;
- constexpr float max_x = 2.0f;
- constexpr float max_y = 3.0f;
- cv::Mat Car_pose_detector::m_model = Car_pose_detector::create_mat(min_x, max_x, min_y, max_y, resolutionx, resolutiony);
- class GridArrayAdapter
- {
- public:
- enum { DATA_DIMENSION = 1 };
- explicit GridArrayAdapter(const cv::Mat& grid) : grid_(grid) {}
- void GetValue(const int row, const int column, double* const value) const {
- if (row < kPadding || column < kPadding || row >= NumRows() - kPadding ||
- column >= NumCols() - kPadding) {
- *value = kMaxCorrespondenceCost;
- } else {
- *value = static_cast<double>(grid_.at<float>(row - kPadding, column - kPadding));
- // if (row - kPadding > 100 && row - kPadding < 300 && column - kPadding > 50 && column - kPadding < 150)
- // printf("row:%d, col:%d, val%.3f\n", row-kPadding, column-kPadding, grid_.at<float>(row - kPadding, column - kPadding));
- }
- }
- int NumRows() const {
- return grid_.rows + 2 * kPadding;
- }
- int NumCols() const {
- return grid_.cols + 2 * kPadding;
- }
- private:
- const cv::Mat& grid_;
- };
- // 代价函数的计算模型
- struct Trans_mat_cost
- {
- Trans_mat_cost(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr, cv::Mat &mat) : m_cloud_ptr(cloud_ptr), m_mat(mat) {
- // cv::namedWindow("img", CV_WINDOW_FREERATIO);
- // cv::imshow("img", m_mat);
- // cv::waitKey();
- // debug_img(cloud_ptr, mat);
- }
- void debug_img(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr, cv::Mat &mat)
- {
- if (m_cloud_ptr == nullptr || m_cloud_ptr->size() <= 0)
- {
- std::cout << "error occured" << std::endl;
- return;
- }
- cv::Mat img_show = mat.clone();//cv::Mat::zeros(mat.rows * 1, mat.cols * 1, CV_32FC1);
- const GridArrayAdapter adapter(mat);
- ceres::BiCubicInterpolator<GridArrayAdapter> interpolator(adapter);
-
- // 点云loss
- // char buf[150960]={0};
- // sprintf(buf, "----");
- for (int i = 0; i < m_cloud_ptr->size(); i++)
- {
- Eigen::Matrix<double, 2, 1> t_point(double(m_cloud_ptr->points[i].x), double(m_cloud_ptr->points[i].y));
- Eigen::Rotation2D<double> rotation(0);
- Eigen::Matrix<double, 2, 2> rotation_matrix = rotation.toRotationMatrix();
- Eigen::Matrix<double, 2, 1> t_trans_point = rotation_matrix * t_point;
- int col_index = int((t_trans_point.x() - min_x) / resolutionx);
- int row_index = int((t_trans_point.y() - min_y) / resolutiony);
- double val=0.0;
- interpolator.Evaluate(row_index +0.5+ kPadding, col_index +0.5+ kPadding, &val);
- cv::circle(img_show, cv::Point(col_index, row_index), 1, cv::Scalar(0.25), 1);
- // sprintf(buf + strlen(buf), "(%.2f,%.2f)---%.3f ", t_trans_point.x(), t_trans_point.y(), val);
- // if(i%15==8)
- // {
- // sprintf(buf + strlen(buf), "\n");
- // }
- }
- // printf(buf);
- // for (size_t i = -mat.rows; i < mat.rows*2; i++)
- // {
- // for (size_t j = -mat.cols; j < mat.cols*2; j++)
- // {
- // double val;
- // // adapter.GetValue(i + kPadding, j + kPadding, &val);
- // interpolator.Evaluate(i+kPadding, j+kPadding, &val);
- // img_show.at<float>(i, j) = val;
- // }
- // }
- // printf("r:%d c:%d\n", img_show.rows, img_show.cols);
- cv::namedWindow("img", cv::WINDOW_FREERATIO);
- // cv::imshow("origin", mat);
- cv::imshow("img", img_show);
- cv::waitKey();
- }
- // 残差的计算
- template <typename T>
- bool operator()(
- const T *const vars, // 模型参数,x y theta w
- T *residual) const
- {
- if (m_cloud_ptr == nullptr || m_cloud_ptr->size() <= 0)
- {
- std::cout << "error occured" << std::endl;
- return false;
- }
- const GridArrayAdapter adapter(m_mat);
- ceres::BiCubicInterpolator<GridArrayAdapter> interpolator(adapter);
- // 点云loss
- Eigen::Rotation2D<T> rotation(vars[2]);
- Eigen::Matrix<T, 2, 2> rotation_matrix = rotation.toRotationMatrix();
- for (int i = 0; i < m_cloud_ptr->size(); i++)
- {
- Eigen::Matrix<T, 2, 1> t_point(T(m_cloud_ptr->points[i].x) - vars[0], T(m_cloud_ptr->points[i].y) - vars[1]);
- Eigen::Matrix<T, 2, 1> t_trans_point = rotation_matrix * t_point;
- T col_index = (t_trans_point.x() - T(min_x)) / T(resolutionx) + T(0.5+kPadding);
- T row_index = (t_trans_point.y() - T(min_y)) / T(resolutiony) + T(0.5+kPadding);
- interpolator.Evaluate(row_index, col_index, &residual[i]);
- }
- // // 参数L2正则化loss
- // residual[m_cloud_ptr->size()] = T(m_cloud_ptr->size()) * width * norm_scale;
- // residual[1] += ceres::pow(vars[1],2) * norm_scale;
- // residual[1] += ceres::pow(vars[2],2) * norm_scale;
- // residual[1] += ceres::pow((vars[3]-T(1.8)),2) * norm_scale;
- // ((i != 3) ? norm_scale : norm_scale * T(m_cloud_ptr->size()));
- return true;
- }
- pcl::PointCloud<pcl::PointXYZ>::Ptr m_cloud_ptr; // x,y数据
- cv::Mat m_mat;
- };
- // 生成优化图像,降低优化耗时
- cv::Mat Car_pose_detector::create_mat(double min_x, double max_x, double min_y, double max_y, double resolution_x, double resolution_y)
- {
- if (max_x < min_x || max_y < min_y || resolution_x <= 0 || resolution_y <= 0)
- {
- return cv::Mat();
- }
- int cols = (max_x - min_x) / resolution_x + 1;
- int rows = (max_y - min_y) / resolution_y + 1;
- if(rows <=1 || cols <=1)
- {
- return cv::Mat();
- }
- cv::Mat t_mat(rows, cols, CV_32FC1);
- for (size_t i = 0; i < rows; i++)
- {
- for (size_t j = 0; j < cols; j++)
- {
- double x = j * resolution_x + min_x;
- double y = i * resolution_y + min_y;
- double left_value = 1.0 / (1.0 + exp(30 * (x + 1.0)));
- double right_value = 1.0 / (1.0 + exp(30 * (-x + 1.0)));
- double front_value = 1.0 / (1.0 + exp(15 * (y + 2.2)));
- double back_value = 1.0 / (1.0 + exp(15 * (-y + 2.2)));
- t_mat.at<float>(i, j) = float((left_value + right_value + front_value + back_value) / 1.0f);
- }
- }
- // std::cout << "r,c " << t_mat.rows << ", " << t_mat.cols << std::endl;
- // cv::imshow("img", t_mat);
- // cv::waitKey();
- return t_mat;
- }
- // 检测底盘z方向值,去中心,使用mat加速
- bool Car_pose_detector::detect_pose_mat(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr, pcl::PointCloud<pcl::PointXYZ>::Ptr out_cloud_ptr, double &x, double &y, double &theta, bool debug_cloud)
- {
- pcl::PointCloud<pcl::PointXYZ>::Ptr t_cloud = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
- t_cloud->operator+=(*cloud_ptr);
- double t_vars[4] = {0, 0, 0, 1.9};
- // 去中心化
- pcl::PointXYZ t_center(0, 0, 0);
- for (size_t i = 0; i < t_cloud->size(); i++)
- {
- t_center.x += t_cloud->points[i].x;
- t_center.y += t_cloud->points[i].y;
- }
- t_center.x /= t_cloud->size();
- t_center.y /= t_cloud->size();
- for (size_t i = 0; i < t_cloud->size(); i++)
- {
- t_cloud->points[i].x -= t_center.x;
- t_cloud->points[i].y -= t_center.y;
- }
- // // write_pointcloud(t_cloud, std::to_string(count)+"_ori_");
- // 构建最小二乘问题
- ceres::Problem problem;
- Trans_mat_cost *tp_trans_mat_cost = new Trans_mat_cost(t_cloud, m_model);
- // tp_trans_mat_cost->debug_img(t_cloud, m_model);
- problem.AddResidualBlock( // 向问题中添加误差项
- // 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致
- new ceres::AutoDiffCostFunction<Trans_mat_cost, ceres::DYNAMIC, 3>(
- tp_trans_mat_cost, t_cloud->size()),
- new ceres::HuberLoss(1.0), // 核函数,这里不使用,为空
- t_vars // 待估计参数
- );
- // 配置求解器
- ceres::Solver::Options options; // 这里有很多配置项可以填
- options.linear_solver_type = ceres::DENSE_QR; // 增量方程如何求解
- options.minimizer_progress_to_stdout = false; // 输出到cout
- options.max_num_iterations = 100;
- ceres::Solver::Summary summary; // 优化信息
- std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
- ceres::Solve(options, &problem, &summary); // 开始优化
- std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
- std::chrono::duration<double> time_used = std::chrono::duration_cast<std::chrono::duration<double>>(t2 - t1);
- // std::cout << "solve time cost = " << time_used.count() << " seconds. " << std::endl;
- // 输出结果
- // std::cout << summary.BriefReport() << std::endl;
- // t_vars[3] -= 0.4;
- // 保存结果,将去除的中心补上
- x = t_vars[0] + t_center.x;
- y = t_vars[1] + t_center.y;
- theta = t_vars[2];
- // printf("x:%.3f y:%.3f th:%.3f\n", x, y, theta);
- if (fabs(theta) > 10 * M_PI / 180.0)
- {
- //std::cout << "wrong angle, detect failed" << theta*180.0/M_PI << std::endl;
- return false;
- }
- return true;
- }
- // 检测底盘z方向值,原始点云去中心,并切除底盘z以上部分
- bool Car_pose_detector::detect_pose(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr, pcl::PointCloud<pcl::PointXYZ>::Ptr out_cloud_ptr, double &x, double &y, double &theta, double &width, double &z_value, bool debug_cloud)
- {
- pcl::PointCloud<pcl::PointXYZ>::Ptr t_cloud = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
- t_cloud->operator+=(*cloud_ptr);
- double t_vars[4] = {0, 0, 0, 1.9};
- // 去中心化
- pcl::PointXYZ t_center(0, 0, 0);
- for (size_t i = 0; i < t_cloud->size(); i++)
- {
- // t_cloud->points[i].x /= 1000.0;
- // t_cloud->points[i].y /= 1000.0;
- // t_cloud->points[i].z /= 1000.0;
- t_center.x += t_cloud->points[i].x;
- t_center.y += t_cloud->points[i].y;
- // t_center.z += t_cloud->points[i].z;
- }
- t_center.x /= t_cloud->size();
- t_center.y /= t_cloud->size();
- // t_center.z /= t_cloud->size();
- for (size_t i = 0; i < t_cloud->size(); i++)
- {
- t_cloud->points[i].x -= t_center.x;
- t_cloud->points[i].y -= t_center.y;
- // t_cloud->points[i].z -= t_center.z;
- }
- // // write_pointcloud(t_cloud, std::to_string(count)+"_ori_");
- // 构建最小二乘问题
- ceres::Problem problem;
- problem.AddResidualBlock( // 向问题中添加误差项
- // 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致
- new ceres::AutoDiffCostFunction<Car_pose_cost, ceres::DYNAMIC, 3>(
- new Car_pose_cost(t_cloud), t_cloud->size()),
- new ceres::HuberLoss(1.0), // 核函数,这里不使用,为空
- t_vars // 待估计参数
- );
- // 配置求解器
- ceres::Solver::Options options; // 这里有很多配置项可以填
- options.linear_solver_type = ceres::DENSE_QR; // 增量方程如何求解
- options.minimizer_progress_to_stdout = false; // 输出到cout
- options.max_num_iterations = 100;
- ceres::Solver::Summary summary; // 优化信息
- std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
- ceres::Solve(options, &problem, &summary); // 开始优化
- std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
- std::chrono::duration<double> time_used = std::chrono::duration_cast<std::chrono::duration<double>>(t2 - t1);
- std::cout << "solve time cost = " << time_used.count() << " seconds. " << std::endl;
- // 输出结果
- // std::cout << summary.BriefReport() << std::endl;
- // t_vars[3] -= 0.4;
- // 保存结果,将去除的中心补上
- x = t_vars[0] + t_center.x;
- y = t_vars[1] + t_center.y;
- theta = t_vars[2];
- // printf("x:%.3f y:%.3f th:%.3f\n", x, y, theta);
- if (fabs(theta) > 10 * M_PI / 180.0)
- {
- //std::cout << "wrong angle, detect failed" << theta*180.0/M_PI << std::endl;
- return false;
- }
- inv_trans_cloud(t_cloud, x, y, theta);
- // viewer.showCloud(cloud_ptr);
- // write_pointcloud(cloud_ptr, "uniform_");
- // //离群点过滤
- // pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
- // sor.setInputCloud(t_cloud);
- // sor.setMeanK(15); //K近邻搜索点个数
- // sor.setStddevMulThresh(3.0); //标准差倍数
- // sor.setNegative(false); //保留未滤波点(内点)
- // sor.filter(*t_cloud); //保存滤波结果到cloud_filter
- // 判断x方向边界,若不关于中心对称则错误
- pcl::PointXYZ total_min_p, total_max_p;
- pcl::getMinMax3D(*t_cloud, total_min_p, total_max_p);
- double x_diff = fabs(total_max_p.x + total_min_p.x) / 2.0;
- if (x_diff > 2.0)
- {
- // std::cout << "left, right not mirroring----"<<x_diff << std::endl;
- }
- else
- {
- // std::cout << "x diff " << x_diff << std::endl;
- width = total_max_p.x - total_min_p.x;
- // 最大轮宽0.28再加上前轮极限旋转角35度
- double wheel_width = 0.28 * (1 + sin(35 * M_PI / 180.0));
- // std::cout << "car width: " << width << std::endl;
- // 切出底盘点,找最低即为z值
- pcl::PointCloud<pcl::PointXYZ>::Ptr inside_cloud = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
- pcl::PassThrough<pcl::PointXYZ> pass;
- pass.setInputCloud(t_cloud);
- pass.setFilterFieldName("x");
- pass.setFilterLimits(-width / 2.0 + wheel_width, width / 2.0 - wheel_width);
- pass.setFilterLimitsNegative(false);
- pass.filter(*inside_cloud);
- // 找最低为z值
- pcl::PointXYZ min_p, max_p;
- pcl::getMinMax3D(*inside_cloud, min_p, max_p);
- z_value = min_p.z-0.01;
- // 根据z值切原始点云
- pass.setInputCloud(t_cloud);
- pass.setFilterFieldName("z");
- pass.setFilterLimits(total_min_p.z, z_value);
- pass.setFilterLimitsNegative(false);
- pass.filter(*t_cloud);
- // std::cout << "\n--------------------------- chassis z0: " << min_p.z << std::endl;
- if (debug_cloud)
- {
- create_curve_cloud(t_cloud, t_vars[3]);
- for (size_t i = 0; i < 60; i++)
- {
- t_cloud->push_back(pcl::PointXYZ(-t_vars[3] / 2.0, -3.0 + i * 0.1, 0.0));
- t_cloud->push_back(pcl::PointXYZ(t_vars[3] / 2.0, -3.0 + i * 0.1, 0.0));
- t_cloud->push_back(pcl::PointXYZ(-width / 2.0, -3.0 + i * 0.1, 0.0));
- t_cloud->push_back(pcl::PointXYZ(width / 2.0, -3.0 + i * 0.1, 0.0));
- t_cloud->push_back(pcl::PointXYZ(-width / 2.0 + wheel_width, -3.0 + i * 0.1, 0.0));
- t_cloud->push_back(pcl::PointXYZ(width / 2.0 - wheel_width, -3.0 + i * 0.1, 0.0));
- }
- out_cloud_ptr->clear();
- out_cloud_ptr->operator+=(*t_cloud);
- }else
- {
- out_cloud_ptr->clear();
- out_cloud_ptr->operator+=(*t_cloud);
- }
- }
- // std::cout << "estimated x,y,theta = " << x << ", " << y << ", " << theta*180.0/M_PI << std::endl;
- // std::cout << "----------------------------------" << std::endl;
- return true;
- }
|