123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555 |
- //
- // Created by zx on 2019/12/6.
- //
- #include "region_detect.h"
- /**
- * 有参构造函数
- * */
- Region_detector::Region_detector()
- {
- }
- /**
- * 析构函数
- * */
- Region_detector::~Region_detector()
- {
- }
- Error_manager Region_detector::init(Point2D_tool::Point2D_box point2D_box)
- {
- m_region_box = point2D_box;
- return Error_code::SUCCESS;
- }
- /**
- * 预处理,xy直通滤波与离群点过滤
- * 返回 PARAMETER_ERROR,WJ_REGION_EMPTY_CLOUD 或 SUCCESS
- * */
- Error_manager Region_detector::preprocess(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud)
- {
- // 1.参数合法性检验
- if (p_cloud->size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- // std::cout<<"preprocess 000"<<std::endl;
- // 2.直通滤波, 筛选xy
- pcl::PassThrough<pcl::PointXYZ> pass;
- pass.setInputCloud(p_cloud);
- pass.setFilterFieldName("x"); //设置想在哪个坐标轴上操作
- pass.setFilterLimits(m_region_box.x_min, m_region_box.x_max); //将x轴的0到1范围内
- pass.setFilterLimitsNegative(false); //保留(true就是删除,false就是保留而删除此区间外的)
- pass.filter(*p_cloud); //输出到结果指针
- if (p_cloud->size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- // std::cout<<"preprocess 111 "<<p_cloud->size()<<std::endl;
- pass.setInputCloud(p_cloud);
- pass.setFilterFieldName("y"); //设置想在哪个坐标轴上操作
- pass.setFilterLimits(m_region_box.y_min, m_region_box.y_max); //将x轴的0到1范围内
- pass.setFilterLimitsNegative(false); //保留(true就是删除,false就是保留而删除此区间外的)
- pass.filter(*p_cloud); //输出到结果指针
- // std::cout << "cloud size: "<<p_cloud->size()<<","<<m_region_box.x_min<<","<<m_region_box.x_max<<","<<m_region_box.y_min<<","<<m_region_box.y_max<<std::endl;
- if (p_cloud->size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- // std::cout<<"preprocess 222 "<<p_cloud->size()<<std::endl;
- // 3.离群点过滤
- pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
- sor.setInputCloud(p_cloud);
- sor.setMeanK(15); //K近邻搜索点个数
- sor.setStddevMulThresh(3.0); //标准差倍数
- sor.setNegative(false); //保留未滤波点(内点)
- sor.filter(*p_cloud); //保存滤波结果到cloud_filter
- // std::cout<<"preprocess 333 "<<p_cloud->size()<<std::endl;
- if (p_cloud->size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- else
- return Error_manager(Error_code::SUCCESS);
- }
- /**
- * 返回二维点之间距离
- * */
- double Region_detector::distance(cv::Point2f p1, cv::Point2f p2)
- {
- return sqrt(pow(p1.x - p2.x, 2.0) + pow(p1.y - p2.y, 2.0));
- }
- /**
- * 判断是否符合标准矩形,
- * 传入矩形四个角点,以及是否打印
- * 返回 WJ_REGION_RECTANGLE_ANGLE_ERROR, WJ_REGION_RECTANGLE_SIZE_ERROR,
- * WJ_REGION_RECTANGLE_SYMMETRY_ERROR, WJ_REGION_CLUSTER_SIZE_ERROR, SUCCESS
- * */
- Error_manager Region_detector::isRect(std::vector<cv::Point2f> &points, bool print)
- {
- if (points.size() == 4)
- {
- double L[3] = {0.0};
- L[0] = distance(points[0], points[1]);
- L[1] = distance(points[1], points[2]);
- L[2] = distance(points[0], points[2]);
- double max_l = L[0];
- double l1 = L[1];
- double l2 = L[2];
- int max_index = 0;
- cv::Point2f ps = points[0], pt = points[1];
- // 顶点
- cv::Point2f pc = points[2];
- for (int i = 1; i < 3; ++i)
- {
- if (L[i] > max_l)
- {
- max_index = i;
- max_l = L[i];
- l1 = L[abs(i + 1) % 3];
- l2 = L[abs(i + 2) % 3];
- ps = points[i % 3];
- pt = points[(i + 1) % 3];
- pc = points[(i + 2) % 3];
- }
- }
- // 顶角大小
- double cosa = (l1 * l1 + l2 * l2 - max_l * max_l) / (2.0 * l1 * l2);
- // 顶角相对于90度过大或小
- if (fabs(cosa) >= 0.15 /* || std::min(l1, l2) > 2.0 || std::max(l1, l2) > 3.3*/)
- {
- if (print)
- {
- LOG(WARNING) << " angle cos >0.13 =" << cosa << " i=" << max_index;
- // LOG(WARNING) << "L1:" << l1 << " L2:" << l2 << " L3:" << max_l;
- }
- return Error_manager(Error_code::WJ_REGION_RECTANGLE_ANGLE_ERROR);
- }
- float width = std::min(l1, l2);
- float length = std::max(l1, l2);
- // 车宽应位于[1.35, 2.0],车长应位于[2.2, 3.0]
- if (width < 1.350 || width > 2.000 || length > 3.000 || length < 2.200)
- {
- if (print)
- {
- LOG(WARNING) << "\t width<1350 || width >2100 || length >3300 ||length < 2100 "
- << " length:" << length << " width:" << width;
- }
- return Error_manager(Error_code::WJ_REGION_RECTANGLE_SIZE_ERROR);
- }
- double d = distance(pc, points[3]);
- cv::Point2f center1 = (ps + pt) * 0.5;
- cv::Point2f center2 = (pc + points[3]) * 0.5;
- // 对角线形变超过0.15倍,或中心点距离偏差0.15m
- if (fabs(d - max_l) > max_l * 0.15 || distance(center1, center2) > 0.150)
- {
- if (print)
- {
- LOG(WARNING) << "d:" << d << " maxl:" << max_l << " center1:" << center1 << " center2:" << center2
- << " center distance=" << distance(center1, center2);
- }
- return Error_manager(Error_code::WJ_REGION_RECTANGLE_SYMMETRY_ERROR);
- }
- if (print)
- {
- LOG(INFO) << " rectangle verify OK cos angle=" << cosa << " length off=" << fabs(d - max_l)
- << " center distance=" << distance(center1, center2);
- }
- return Error_manager(Error_code::SUCCESS);
- }
- // 以三个点进行验证
- else if (points.size() == 3)
- {
- double L[3] = {0.0};
- L[0] = distance(points[0], points[1]);
- L[1] = distance(points[1], points[2]);
- L[2] = distance(points[0], points[2]);
- double max_l = L[0];
- double l1 = L[1];
- double l2 = L[2];
- int max_index = 0;
- cv::Point2f ps = points[0], pt = points[1];
- cv::Point2f pc = points[2];
- for (int i = 1; i < 3; ++i)
- {
- if (L[i] > max_l)
- {
- max_index = i;
- max_l = L[i];
- l1 = L[abs(i + 1) % 3];
- l2 = L[abs(i + 2) % 3];
- ps = points[i % 3];
- pt = points[(i + 1) % 3];
- pc = points[(i + 2) % 3];
- }
- }
- double cosa = (l1 * l1 + l2 * l2 - max_l * max_l) / (2.0 * l1 * l2);
- // 顶角应接近90度
- if (fabs(cosa) >= 0.15)
- {
- if (print)
- {
- LOG(WARNING) << "3 wheels angle cos >0.12 =" << cosa << " i=" << max_index;
- LOG(WARNING) << "L1:" << l1 << " L2:" << l2 << " L3:" << max_l;
- }
- return Error_manager(Error_code::WJ_REGION_RECTANGLE_ANGLE_ERROR);
- }
- double length = std::max(l1, l2);
- double width = std::min(l1, l2);
- // 车宽应位于[1.4, 2.0],车长应位于[2.2, 3.0]
- if (length > 2.100 && length < 3.000 && width > 1.400 && width < 2.100)
- {
- //生成第四个点
- cv::Point2f vec1 = ps - pc;
- cv::Point2f vec2 = pt - pc;
- cv::Point2f point4 = (vec1 + vec2) + pc;
- points.push_back(point4);
- if (print)
- {
- LOG(WARNING) << "3 wheels rectangle verify OK cos angle=" << cosa << " L=" << length
- << " w=" << width;
- }
- return Error_manager(Error_code::SUCCESS);
- }
- else
- {
- if (print)
- {
- LOG(WARNING) << "3 wheels rectangle verify Failed cos angle=" << cosa << " L=" << length
- << " w=" << width;
- }
- return Error_manager(Error_code::WJ_REGION_RECTANGLE_SIZE_ERROR);
- }
- }
- else
- {
- return Error_manager(Error_code::WJ_REGION_CLUSTER_SIZE_ERROR);
- }
- }
- /*
- * 仅仅聚类
- */
- Error_manager Region_detector::clustering_only(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in,
- std::vector<pcl::PointCloud<pcl::PointXYZ>> &seg_clouds, bool print)
- {
- // 1.判断参数合法性
- if (cloud_in->size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- // 2.聚类
- pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<pcl::PointXYZ>);
- kdtree->setInputCloud(cloud_in);
- pcl::EuclideanClusterExtraction<pcl::PointXYZ> clustering;
- // 设置聚类的最小值 2cm (small values may cause objects to be divided
- // in several clusters, whereas big values may join objects in a same cluster).
- clustering.setClusterTolerance(0.5);
- // 设置聚类的小点数和最大点云数
- clustering.setMinClusterSize(10);
- clustering.setMaxClusterSize(500);
- clustering.setSearchMethod(kdtree);
- clustering.setInputCloud(cloud_in);
- std::vector<pcl::PointIndices> clusters;
- clustering.extract(clusters);
- if(clusters.size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- for (int i = 0; i < clusters.size(); ++i)
- {
- seg_clouds.push_back(pcl::PointCloud<pcl::PointXYZ>());
- }
- int j = 0;
- for (std::vector<pcl::PointIndices>::const_iterator it = clusters.begin(); it != clusters.end(); ++it)
- {
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
- //创建新的点云数据集cloud_cluster,将所有当前聚类写入到点云数据集中
- for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
- {
- cloud_cluster->points.push_back(cloud_in->points[*pit]);
- cloud_cluster->width = cloud_cluster->points.size();
- cloud_cluster->height = 1;
- cloud_cluster->is_dense = true;
- }
- seg_clouds[j] = *cloud_cluster;
- j++;
- }
- if (print)
- {
- LOG(INFO) << " cluster classes:" << clusters.size();
- }
- return SUCCESS;
- }
- /**
- * 聚类并通过矩形判断函数
- * 传入原始点云,传出角点与聚类出的点云
- * 返回 WJ_REGION_EMPTY_CLOUD, WJ_REGION_RECTANGLE_ANGLE_ERROR, WJ_REGION_RECTANGLE_SIZE_ERROR,
- * WJ_REGION_RECTANGLE_SYMMETRY_ERROR, WJ_REGION_CLUSTER_SIZE_ERROR, SUCCESS
- * */
- Error_manager Region_detector::clustering(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in, std::vector<cv::Point2f> &corner_points, std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> &seg_clouds, bool print)
- {
- // 1.判断参数合法性
- if (cloud_in->size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- // 2.聚类
- pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree(new pcl::search::KdTree<pcl::PointXYZ>);
- kdtree->setInputCloud(cloud_in);
- pcl::EuclideanClusterExtraction<pcl::PointXYZ> clustering;
- // 设置聚类的最小值 2cm (small values may cause objects to be divided
- // in several clusters, whereas big values may join objects in a same cluster).
- clustering.setClusterTolerance(0.2);
- // 设置聚类的小点数和最大点云数
- clustering.setMinClusterSize(10);
- clustering.setMaxClusterSize(500);
- clustering.setSearchMethod(kdtree);
- clustering.setInputCloud(cloud_in);
- std::vector<pcl::PointIndices> clusters;
- clustering.extract(clusters);
- if(clusters.size() <= 0)
- return Error_manager(Error_code::WJ_REGION_EMPTY_CLOUD);
- for (int i = 0; i < clusters.size(); ++i)
- {
- seg_clouds.push_back(pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>));
- }
- int j = 0;
- for (std::vector<pcl::PointIndices>::const_iterator it = clusters.begin(); it != clusters.end(); ++it)
- {
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
- //创建新的点云数据集cloud_cluster,将所有当前聚类写入到点云数据集中
- for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
- {
- cloud_cluster->points.push_back(cloud_in->points[*pit]);
- cloud_cluster->width = cloud_cluster->points.size();
- cloud_cluster->height = 1;
- cloud_cluster->is_dense = true;
- }
- seg_clouds[j] = cloud_cluster;
- j++;
- }
- if (print)
- {
- LOG(INFO) << " cluster classes:" << clusters.size();
- }
- // 3.分别计算每团点云几何中心,作为矩形角点
- corner_points.clear();
- for (int i = 0; i < clusters.size(); ++i)
- {
- if (seg_clouds.size() <= i || seg_clouds[i]->size() == 0)
- continue;
- float sumX = 0, sumY = 0;
- for (int j = 0; j < seg_clouds[i]->size(); ++j)
- {
- sumX += seg_clouds[i]->points[j].x;
- sumY += seg_clouds[i]->points[j].y;
- }
- float center_x = sumX / float(seg_clouds[i]->size());
- float center_y = sumY / float(seg_clouds[i]->size());
- corner_points.push_back(cv::Point2f(center_x, center_y));
- }
- /*char buf[255]={0};
- for (int k = 0; k < corner_points.size(); ++k) {
- sprintf(buf+strlen(buf), "point %d: (%.2f, %.2f)__", k, corner_points[k].x, corner_points[k].y);
- }
- LOG(WARNING) << buf;*/
- cv::RotatedRect t_rect=cv::minAreaRect(corner_points);
- //display(t_rect,cv::Scalar(255,0,0));
- return isRect(corner_points, print);
- }
- // 检测传入点云,识别为四类返回中心点、角度、轮距与宽度
- Error_manager Region_detector::detect(std::mutex* p_cloud_mutex, pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_in,
- Common_data::Car_wheel_information& car_wheel_information, bool print)
- {
- //整个函数都加锁, 这里面非法修改了输入点云, 是为了将筛选点云的结构传出, 然后点云存txt文件
- std::unique_lock<std::mutex> t_lock(*p_cloud_mutex);
- Error_manager result = Error_manager(Error_code::SUCCESS);
- pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
- *p_cloud_filtered = *p_cloud_in;
- // 1.预处理
- result = preprocess(p_cloud_filtered);
- if (result != SUCCESS)
- return result;
- // 2.聚类计算角点
- std::vector<cv::Point2f> corner_points;
- std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> seg_clouds;
- result = clustering(p_cloud_filtered, corner_points, seg_clouds, print);
- if (result != SUCCESS)
- return result;
- // 修改原始点云为预处理后点云,并加入角点供查验
- p_cloud_in->clear();
- p_cloud_in->operator+=(*p_cloud_filtered);
- for (size_t i = 0; i < corner_points.size(); i++)
- {
- p_cloud_in->points.push_back(pcl::PointXYZ(corner_points[i].x, corner_points[i].y, 0.0));
- }
- // convert all points after preprocessed into 2d
- std::vector<cv::Point2f> all_points;
- // car center
- for (int j = 0; j < p_cloud_filtered->size(); ++j)
- {
- all_points.push_back(cv::Point2f(p_cloud_filtered->points[j].x, p_cloud_filtered->points[j].y));
- }
- // find bounding rectangle of all wheel points
- cv::RotatedRect wheel_box = cv::minAreaRect(all_points);
- car_wheel_information.car_center_x = wheel_box.center.x;
- car_wheel_information.car_center_y = wheel_box.center.y;
- // add center point to the input cloud for further check
- p_cloud_in->points.push_back(pcl::PointXYZ(car_wheel_information.car_center_x, car_wheel_information.car_center_y, 0.0));
- // 长边向量
- cv::Point2f vec;
- cv::Point2f vertice[4];
- wheel_box.points(vertice);
- float len1 = pow(vertice[0].x - vertice[1].x, 2.0) + pow(vertice[0].y - vertice[1].y, 2.0);
- float len2 = pow(vertice[1].x - vertice[2].x, 2.0) + pow(vertice[1].y - vertice[2].y, 2.0);
- // 寻找长边,倾角为长边与x轴夹角
- if (len1 > len2)
- {
- vec.x = vertice[0].x - vertice[1].x;
- vec.y = vertice[0].y - vertice[1].y;
- }
- else
- {
- vec.x = vertice[1].x - vertice[2].x;
- vec.y = vertice[1].y - vertice[2].y;
- }
- float angle_x = 180.0 / M_PI * acos(vec.x / sqrt(vec.x * vec.x + vec.y * vec.y));
- car_wheel_information.car_angle = angle_x;
- // get line formula, normal is (cos(theta), sin(theta)), towards the long side
- // the line formula is: nx * x + ny * y + (-(nx*cx+ny*cy)) = 0
- Eigen::Vector2f normal, center_point;
- normal << vec.x / sqrt(vec.x * vec.x + vec.y * vec.y), vec.y / sqrt(vec.x * vec.x + vec.y * vec.y);
- center_point << car_wheel_information.car_center_x, car_wheel_information.car_center_y;
- float line_param_c = -1 * center_point.transpose() * normal;
- // get rotation matrix, get the angle towards normal vector, rather than x axis
- // R = [ cos -sin]
- // [ sin cos]
- float rotate_angle = M_PI_2 - acos(vec.x / sqrt(vec.x * vec.x + vec.y * vec.y));
- Eigen::Matrix2f rotation_matrix;
- rotation_matrix << cos(rotate_angle), -sin(rotate_angle), sin(rotate_angle), cos(rotate_angle);
- // find min x and max x, separate y values according to the line, calculate difference between mean of y values as wheelbase
- float min_x = 20, max_x = 0;
- float y_values0 = 0, y_values1 = 0;
- int count0 = 0, count1 = 0;
- for (size_t i = 0; i < seg_clouds.size(); i++)
- {
- if (seg_clouds[i]->size() <= 0)
- continue;
- for (size_t j = 0; j < seg_clouds[i]->size(); j++)
- {
- // origin point and the point rotated around the origin
- Eigen::Vector2f vec, vec_rot;
- vec << seg_clouds[i]->points[j].x, seg_clouds[i]->points[j].y;
- vec_rot = rotation_matrix * (vec - center_point) + center_point;
- // find min max x
- if (vec_rot[0] < min_x)
- min_x = vec_rot[0];
- if (vec_rot[0] > max_x)
- max_x = vec_rot[0];
- // separate point as two clusters(front and back), calc y values respectively
- if (normal.transpose() * vec + line_param_c > 0)
- {
- y_values0 += vec_rot[1];
- count0 += 1;
- }
- else
- {
- y_values1 += vec_rot[1];
- count1 += 1;
- }
- }
- }
- // check if front and back both has points
- if (count0 > 0 && count1 > 0)
- {
- y_values0 /= count0;
- y_values1 /= count1;
- car_wheel_information.car_wheel_base = fabs(y_values1 - y_values0);
- car_wheel_information.car_wheel_width = fabs(min_x - max_x);
- // LOG(INFO) << "--------detector find width, wheelbase: " << width << ", " << wheelbase << ", y means: [" << y_values0 << ", " << y_values1 << "] -----";
- p_cloud_in->points.push_back(pcl::PointXYZ(min_x, car_wheel_information.car_center_y, 0.0));
- p_cloud_in->points.push_back(pcl::PointXYZ(max_x, car_wheel_information.car_center_y, 0.0));
- p_cloud_in->points.push_back(pcl::PointXYZ(car_wheel_information.car_center_x, y_values0, 0.0));
- p_cloud_in->points.push_back(pcl::PointXYZ(car_wheel_information.car_center_x, y_values1, 0.0));
- }
- else
- {
- // calculate wheelbase according to corner points
- // wheelbase = std::max(wheel_box.size.width, wheel_box.size.height);
- // LOG(INFO) << "--------detector find border: [" << wheel_box.size.width << ", " << wheel_box.size.height << "] -----";
- cv::RotatedRect wheel_center_box = cv::minAreaRect(corner_points);
- car_wheel_information.car_wheel_base = std::max(wheel_center_box.size.width, wheel_center_box.size.height);
- car_wheel_information.car_wheel_width = std::min(wheel_box.size.width, wheel_box.size.height);
- }
- return Error_manager(Error_code::SUCCESS);
- }
- //通过ceres检测中心,旋转,轴距,宽度, 新算法, 可以测量前轮旋转
- Error_manager Region_detector::detect_ex(std::mutex* p_cloud_mutex, pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_in,
- Common_data::Car_wheel_information& car_wheel_information, bool print)
- {
- Error_manager result = Error_manager(Error_code::SUCCESS);
- pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
- {
- std::unique_lock<std::mutex> t_lock(*p_cloud_mutex);
- *p_cloud_filtered = *p_cloud_in;
- }
- // 1.预处理
- result = preprocess(p_cloud_filtered);
- if (result != SUCCESS)
- return result;
- // std::cout << " huli test :::: " << " 111 = " << 111 << std::endl;
- // 2.聚类
- std::vector<pcl::PointCloud<pcl::PointXYZ>> seg_clouds;
- result = clustering_only(p_cloud_filtered, seg_clouds, print);
- if (result != SUCCESS)
- return result;
- // std::cout << " huli test :::: " << " 112 = " << 112 << std::endl;
- detect_wheel_ceres::Detect_result detect_result;
- std::string t_error_info;
- if(!m_detector_ceres.detect(seg_clouds, detect_result, t_error_info))
- {
- return Error_manager(Error_code::WJ_REGION_CERES_SOLVE_ERROR, MINOR_ERROR, t_error_info.c_str());
- }
- else
- {
- std::unique_lock<std::mutex> t_lock(*p_cloud_mutex);
- car_wheel_information.car_center_x = detect_result.cx;
- car_wheel_information.car_center_y = detect_result.cy;
- car_wheel_information.car_angle = detect_result.theta;
- car_wheel_information.car_wheel_base = detect_result.wheel_base;
- car_wheel_information.car_wheel_width = detect_result.width;
- car_wheel_information.car_front_theta = detect_result.front_theta;
- car_wheel_information.correctness = detect_result.success;
- }
- return Error_manager(Error_code::SUCCESS);
- }
|