car_pose_detector.h 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. /*
  2. * @Description: 底盘z高度检测类,准确识别出平移,旋转,车宽,底盘高度,供3D车轮算法优化出车辆准确信息
  3. * @Author: yct
  4. * @Date: 2021-09-16 15:02:49
  5. * @LastEditTime: 2021-09-22 15:01:45
  6. * @LastEditors: yct
  7. */
  8. #ifndef Z_DETECTOR_HH
  9. #define Z_DETECTOR_HH
  10. #include <iostream>
  11. #include <chrono>
  12. #include <ceres/ceres.h>
  13. #include <pcl/common/common.h>
  14. #include <pcl/point_cloud.h>
  15. #include <pcl/point_types.h>
  16. #include <pcl/filters/passthrough.h>
  17. #include <pcl/filters/statistical_outlier_removal.h>
  18. #include "../tool/singleton.h"
  19. // 代价函数的计算模型
  20. struct Car_pose_cost
  21. {
  22. Car_pose_cost(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr) : m_cloud_ptr(cloud_ptr) {}
  23. // 残差的计算
  24. template <typename T>
  25. bool operator()(
  26. const T *const vars, // 模型参数,x y theta w
  27. T *residual) const
  28. {
  29. if (m_cloud_ptr == nullptr || m_cloud_ptr->size() <= 0)
  30. {
  31. std::cout << "error occured" << std::endl;
  32. return false;
  33. }
  34. const T norm_scale = T(0.002);
  35. //residual[0] = T(0);
  36. // residual[1] = T(0);
  37. // residual[m_cloud_ptr->size()] = T(0.0);
  38. // 点云loss
  39. const T width = T(2.0); //vars[3];
  40. for (int i = 0; i < m_cloud_ptr->size(); i++)
  41. {
  42. Eigen::Matrix<T, 2, 1> t_point(T(m_cloud_ptr->points[i].x) - vars[0], T(m_cloud_ptr->points[i].y) - vars[1]);
  43. Eigen::Rotation2D<T> rotation(vars[2]);
  44. Eigen::Matrix<T, 2, 2> rotation_matrix = rotation.toRotationMatrix();
  45. Eigen::Matrix<T, 2, 1> t_trans_point = rotation_matrix * t_point;
  46. T left_loss = T(1.0) / (T(1.0) + ceres::exp(T(30.0) * (t_trans_point.x() + width / T(2.0))));
  47. T right_loss = T(1.0) / (T(1.0) + ceres::exp(T(30.0) * (-t_trans_point.x() + width / T(2.0))));
  48. T front_loss = T(1.0) / (T(1.0) + ceres::exp(T(15.0) * (t_trans_point.y() + T(2.2))));
  49. T back_loss = T(1.0) / (T(1.0) + ceres::exp(T(15.0) * (-t_trans_point.y() + T(2.2))));
  50. residual[i] = left_loss + right_loss + front_loss + back_loss; // + norm_scale * ((left_loss - T(0.5)) + (right_loss - T(0.5)));
  51. // residual[m_cloud_ptr->size()] += (left_loss - T(0.5)) + (right_loss - T(0.5));
  52. // if(left_loss > T(0.01))
  53. // std::cout << "index l r: " << i << ", " << left_loss << ", " << right_loss << ", " << trans_point.x() << std::endl;
  54. }
  55. // // 参数L2正则化loss
  56. // residual[m_cloud_ptr->size()] = T(m_cloud_ptr->size()) * width * norm_scale;
  57. // residual[1] += ceres::pow(vars[1],2) * norm_scale;
  58. // residual[1] += ceres::pow(vars[2],2) * norm_scale;
  59. // residual[1] += ceres::pow((vars[3]-T(1.8)),2) * norm_scale;
  60. // ((i != 3) ? norm_scale : norm_scale * T(m_cloud_ptr->size()));
  61. return true;
  62. }
  63. pcl::PointCloud<pcl::PointXYZ>::Ptr m_cloud_ptr; // x,y数据
  64. };
  65. #include <opencv2/opencv.hpp>
  66. // 代价函数的计算模型
  67. struct Trans_mat_cost
  68. {
  69. Trans_mat_cost(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr, cv::Mat mat) : m_cloud_ptr(cloud_ptr), m_mat(mat) {}
  70. // 残差的计算
  71. template <typename T>
  72. bool operator()(
  73. const T *const vars, // 模型参数,x y theta w
  74. T *residual) const
  75. {
  76. if (m_cloud_ptr == nullptr || m_cloud_ptr->size() <= 0)
  77. {
  78. std::cout << "error occured" << std::endl;
  79. return false;
  80. }
  81. const T norm_scale = T(0.002);
  82. //residual[0] = T(0);
  83. // residual[1] = T(0);
  84. // residual[m_cloud_ptr->size()] = T(0.0);
  85. // 点云loss
  86. const T width = T(2.0); //vars[3];
  87. for (int i = 0; i < m_cloud_ptr->size(); i++)
  88. {
  89. Eigen::Matrix<T, 2, 1> t_point(T(m_cloud_ptr->points[i].x) - vars[0], T(m_cloud_ptr->points[i].y) - vars[1]);
  90. Eigen::Rotation2D<T> rotation(vars[2]);
  91. Eigen::Matrix<T, 2, 2> rotation_matrix = rotation.toRotationMatrix();
  92. Eigen::Matrix<T, 2, 1> t_trans_point = rotation_matrix * t_point;
  93. T left_loss = T(1.0) / (T(1.0) + ceres::exp(T(30.0) * (t_trans_point.x() + width / T(2.0))));
  94. T right_loss = T(1.0) / (T(1.0) + ceres::exp(T(30.0) * (-t_trans_point.x() + width / T(2.0))));
  95. T front_loss = T(1.0) / (T(1.0) + ceres::exp(T(15.0) * (t_trans_point.y() + T(2.4))));
  96. T back_loss = T(1.0) / (T(1.0) + ceres::exp(T(15.0) * (-t_trans_point.y() + T(2.4))));
  97. residual[i] = left_loss + right_loss + front_loss + back_loss; // + norm_scale * ((left_loss - T(0.5)) + (right_loss - T(0.5)));
  98. // residual[m_cloud_ptr->size()] += (left_loss - T(0.5)) + (right_loss - T(0.5));
  99. // if(left_loss > T(0.01))
  100. // std::cout << "index l r: " << i << ", " << left_loss << ", " << right_loss << ", " << trans_point.x() << std::endl;
  101. }
  102. // // 参数L2正则化loss
  103. // residual[m_cloud_ptr->size()] = T(m_cloud_ptr->size()) * width * norm_scale;
  104. // residual[1] += ceres::pow(vars[1],2) * norm_scale;
  105. // residual[1] += ceres::pow(vars[2],2) * norm_scale;
  106. // residual[1] += ceres::pow((vars[3]-T(1.8)),2) * norm_scale;
  107. // ((i != 3) ? norm_scale : norm_scale * T(m_cloud_ptr->size()));
  108. return true;
  109. }
  110. pcl::PointCloud<pcl::PointXYZ>::Ptr m_cloud_ptr; // x,y数据
  111. cv::Mat m_mat;
  112. };
  113. class Car_pose_detector : public Singleton<Car_pose_detector>
  114. {
  115. friend class Singleton<Car_pose_detector>;
  116. public:
  117. Car_pose_detector(const Car_pose_detector &) = delete;
  118. Car_pose_detector &operator=(const Car_pose_detector &) = delete;
  119. ~Car_pose_detector() = default;
  120. // 变换点云
  121. void inv_trans_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_ptr, double x, double y, double theta);
  122. // 变换点云
  123. void trans_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_ptr, double x, double y, double theta);
  124. // 创建两轴具体曲线
  125. void create_curve_cloud(pcl::PointCloud<pcl::PointXYZ>::Ptr &cloud_ptr, double width);
  126. // 检测底盘z方向值,去中心,
  127. bool detect_pose(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr, pcl::PointCloud<pcl::PointXYZ>::Ptr out_cloud_ptr, double &x, double &y, double &theta, double &width, double &z_value, bool debug_cloud=false);
  128. private:
  129. // 父类的构造函数必须保护,子类的构造函数必须私有。
  130. Car_pose_detector() = default;
  131. };
  132. #endif // !Z_DETECTOR_HH