123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- import numpy as np
- import cv2
- import os
- image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm']
- def splitfn(fn):
- path, fn = os.path.split(fn)
- name, ext = os.path.splitext(fn)
- return path, name, ext
- def anorm2(a):
- return (a*a).sum(-1)
- def anorm(a):
- return np.sqrt( anorm2(a) )
- def homotrans(H, x, y):
- xs = H[0, 0]*x + H[0, 1]*y + H[0, 2]
- ys = H[1, 0]*x + H[1, 1]*y + H[1, 2]
- s = H[2, 0]*x + H[2, 1]*y + H[2, 2]
- return xs/s, ys/s
- def to_rect(a):
- a = np.ravel(a)
- if len(a) == 2:
- a = (0, 0, a[0], a[1])
- return np.array(a, np.float64).reshape(2, 2)
- def rect2rect_mtx(src, dst):
- src, dst = to_rect(src), to_rect(dst)
- cx, cy = (dst[1] - dst[0]) / (src[1] - src[0])
- tx, ty = dst[0] - src[0] * (cx, cy)
- M = np.float64([[ cx, 0, tx],
- [ 0, cy, ty],
- [ 0, 0, 1]])
- return M
- def lookat(eye, target, up = (0, 0, 1)):
- fwd = np.asarray(target, np.float64) - eye
- fwd /= anorm(fwd)
- right = np.cross(fwd, up)
- right /= anorm(right)
- down = np.cross(fwd, right)
- R = np.float64([right, down, fwd])
- tvec = -np.dot(R, eye)
- return R, tvec
- def mtx2rvec(R):
- w, u, vt = cv2.SVDecomp(R - np.eye(3))
- p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
- c = np.dot(vt[0], p)
- s = np.dot(vt[1], p)
- axis = np.cross(vt[0], vt[1])
- return axis * np.arctan2(s, c)
- def draw_str(dst, (x, y), s):
- cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, linetype=cv2.CV_AA)
- cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), linetype=cv2.CV_AA)
- class Sketcher:
- def __init__(self, windowname, dests, colors_func):
- self.prev_pt = None
- self.windowname = windowname
- self.dests = dests
- self.colors_func = colors_func
- self.dirty = False
- self.show()
- cv2.setMouseCallback(self.windowname, self.on_mouse)
- def show(self):
- cv2.imshow(self.windowname, self.dests[0])
- def on_mouse(self, event, x, y, flags, param):
- pt = (x, y)
- if event == cv2.EVENT_LBUTTONDOWN:
- self.prev_pt = pt
- if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
- for dst, color in zip(self.dests, self.colors_func()):
- cv2.line(dst, self.prev_pt, pt, color, 5)
- self.dirty = True
- self.prev_pt = pt
- self.show()
- else:
- self.prev_pt = None
- # palette data from matplotlib/_cm.py
- _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1),
- (1, 0.5, 0.5)),
- 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1),
- (0.91,0,0), (1, 0, 0)),
- 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0),
- (1, 0, 0))}
- cmap_data = { 'jet' : _jet_data }
- def make_cmap(name, n=256):
- data = cmap_data[name]
- xs = np.linspace(0.0, 1.0, n)
- channels = []
- eps = 1e-6
- for ch_name in ['blue', 'green', 'red']:
- ch_data = data[ch_name]
- xp, yp = [], []
- for x, y1, y2 in ch_data:
- xp += [x, x+eps]
- yp += [y1, y2]
- ch = np.interp(xs, xp, yp)
- channels.append(ch)
- return np.uint8(np.array(channels).T*255)
- def nothing(*arg, **kw):
- pass
- def clock():
- return cv2.getTickCount() / cv2.getTickFrequency()
|