123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- #!/usr/bin/env python
- """ nav_test.py - Version 1.1 2013-12-20
- Command a robot to move autonomously among a number of goal locations defined in the map frame.
- On each round, select a new random sequence of locations, then attempt to move to each location
- in succession. Keep track of success rate, time elapsed, and total distance traveled.
- Created for the Pi Robot Project: http://www.pirobot.org
- Copyright (c) 2012 Patrick Goebel. All rights reserved.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.5
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details at:
-
- http://www.gnu.org/licenses/gpl.html
-
- """
- import rospy
- import actionlib
- from actionlib_msgs.msg import *
- from geometry_msgs.msg import Pose, PoseWithCovarianceStamped, Point, Quaternion, Twist
- from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
- from random import sample
- from math import pow, sqrt
- class NavTest():
- def __init__(self):
- rospy.init_node('nav_test', anonymous=True)
-
- rospy.on_shutdown(self.shutdown)
-
- # How long in seconds should the robot pause at each location?
- self.rest_time = rospy.get_param("~rest_time", 10)
-
- # Are we running in the fake simulator?
- self.fake_test = rospy.get_param("~fake_test", False)
-
- # Goal state return values
- goal_states = ['PENDING', 'ACTIVE', 'PREEMPTED',
- 'SUCCEEDED', 'ABORTED', 'REJECTED',
- 'PREEMPTING', 'RECALLING', 'RECALLED',
- 'LOST']
-
- # Set up the goal locations. Poses are defined in the map frame.
- # An easy way to find the pose coordinates is to point-and-click
- # Nav Goals in RViz when running in the simulator.
- # Pose coordinates are then displayed in the terminal
- # that was used to launch RViz.
- locations = dict()
-
- locations['hall_foyer'] = Pose(Point(0.643, 4.720, 0.000), Quaternion(0.000, 0.000, 0.223, 0.975))
- locations['hall_kitchen'] = Pose(Point(-1.994, 4.382, 0.000), Quaternion(0.000, 0.000, -0.670, 0.743))
- locations['hall_bedroom'] = Pose(Point(-3.719, 4.401, 0.000), Quaternion(0.000, 0.000, 0.733, 0.680))
- locations['living_room_1'] = Pose(Point(0.720, 2.229, 0.000), Quaternion(0.000, 0.000, 0.786, 0.618))
- locations['living_room_2'] = Pose(Point(1.471, 1.007, 0.000), Quaternion(0.000, 0.000, 0.480, 0.877))
- locations['dining_room_1'] = Pose(Point(-0.861, -0.019, 0.000), Quaternion(0.000, 0.000, 0.892, -0.451))
-
- # Publisher to manually control the robot (e.g. to stop it, queue_size=5)
- self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)
-
- # Subscribe to the move_base action server
- self.move_base = actionlib.SimpleActionClient("move_base", MoveBaseAction)
-
- rospy.loginfo("Waiting for move_base action server...")
-
- # Wait 60 seconds for the action server to become available
- self.move_base.wait_for_server(rospy.Duration(60))
-
- rospy.loginfo("Connected to move base server")
-
- # A variable to hold the initial pose of the robot to be set by
- # the user in RViz
- initial_pose = PoseWithCovarianceStamped()
-
- # Variables to keep track of success rate, running time,
- # and distance traveled
- n_locations = len(locations)
- n_goals = 0
- n_successes = 0
- i = n_locations
- distance_traveled = 0
- start_time = rospy.Time.now()
- running_time = 0
- location = ""
- last_location = ""
-
- # Get the initial pose from the user
- rospy.loginfo("*** Click the 2D Pose Estimate button in RViz to set the robot's initial pose...")
- rospy.wait_for_message('initialpose', PoseWithCovarianceStamped)
- self.last_location = Pose()
- rospy.Subscriber('initialpose', PoseWithCovarianceStamped, self.update_initial_pose)
-
- # Make sure we have the initial pose
- while initial_pose.header.stamp == "":
- rospy.sleep(1)
-
- rospy.loginfo("Starting navigation test")
-
- # Begin the main loop and run through a sequence of locations
- while not rospy.is_shutdown():
- # If we've gone through the current sequence,
- # start with a new random sequence
- if i == n_locations:
- i = 0
- sequence = sample(locations, n_locations)
- # Skip over first location if it is the same as
- # the last location
- if sequence[0] == last_location:
- i = 1
-
- # Get the next location in the current sequence
- location = sequence[i]
-
- # Keep track of the distance traveled.
- # Use updated initial pose if available.
- if initial_pose.header.stamp == "":
- distance = sqrt(pow(locations[location].position.x -
- locations[last_location].position.x, 2) +
- pow(locations[location].position.y -
- locations[last_location].position.y, 2))
- else:
- rospy.loginfo("Updating current pose.")
- distance = sqrt(pow(locations[location].position.x -
- initial_pose.pose.pose.position.x, 2) +
- pow(locations[location].position.y -
- initial_pose.pose.pose.position.y, 2))
- initial_pose.header.stamp = ""
-
- # Store the last location for distance calculations
- last_location = location
-
- # Increment the counters
- i += 1
- n_goals += 1
-
- # Set up the next goal location
- self.goal = MoveBaseGoal()
- self.goal.target_pose.pose = locations[location]
- self.goal.target_pose.header.frame_id = 'map'
- self.goal.target_pose.header.stamp = rospy.Time.now()
-
- # Let the user know where the robot is going next
- rospy.loginfo("Going to: " + str(location))
-
- # Start the robot toward the next location
- self.move_base.send_goal(self.goal)
-
- # Allow 5 minutes to get there
- finished_within_time = self.move_base.wait_for_result(rospy.Duration(300))
-
- # Check for success or failure
- if not finished_within_time:
- self.move_base.cancel_goal()
- rospy.loginfo("Timed out achieving goal")
- else:
- state = self.move_base.get_state()
- if state == GoalStatus.SUCCEEDED:
- rospy.loginfo("Goal succeeded!")
- n_successes += 1
- distance_traveled += distance
- rospy.loginfo("State:" + str(state))
- else:
- rospy.loginfo("Goal failed with error code: " + str(goal_states[state]))
-
- # How long have we been running?
- running_time = rospy.Time.now() - start_time
- running_time = running_time.secs / 60.0
-
- # Print a summary success/failure, distance traveled and time elapsed
- rospy.loginfo("Success so far: " + str(n_successes) + "/" +
- str(n_goals) + " = " +
- str(100 * n_successes/n_goals) + "%")
- rospy.loginfo("Running time: " + str(trunc(running_time, 1)) +
- " min Distance: " + str(trunc(distance_traveled, 1)) + " m")
- rospy.sleep(self.rest_time)
-
- def update_initial_pose(self, initial_pose):
- self.initial_pose = initial_pose
- def shutdown(self):
- rospy.loginfo("Stopping the robot...")
- self.move_base.cancel_goal()
- rospy.sleep(2)
- self.cmd_vel_pub.publish(Twist())
- rospy.sleep(1)
-
- def trunc(f, n):
- # Truncates/pads a float f to n decimal places without rounding
- slen = len('%.*f' % (n, f))
- return float(str(f)[:slen])
- if __name__ == '__main__':
- try:
- NavTest()
- rospy.spin()
- except rospy.ROSInterruptException:
- rospy.loginfo("AMCL navigation test finished.")
|