123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- #!/usr/bin/env python
- """
- follower.py - Version 1.1 2013-12-20
-
- Follow a "person" by tracking the nearest object in x-y-z space.
-
- Based on the follower application by Tony Pratkanis at:
-
- http://ros.org/wiki/turtlebot_follower
-
- Created for the Pi Robot Project: http://www.pirobot.org
- Copyright (c) 2012 Patrick Goebel. All rights reserved.
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details at:
-
- http://www.gnu.org/licenses/gpl.html
- """
- import rospy
- from roslib import message
- from sensor_msgs import point_cloud2
- from sensor_msgs.msg import PointCloud2
- from geometry_msgs.msg import Twist
- from math import copysign
- class Follower():
- def __init__(self):
- rospy.init_node("follower")
-
- # Set the shutdown function (stop the robot)
- rospy.on_shutdown(self.shutdown)
-
- # The dimensions (in meters) of the box in which we will search
- # for the person (blob). These are given in camera coordinates
- # where x is left/right,y is up/down and z is depth (forward/backward)
- self.min_x = rospy.get_param("~min_x", -0.2)
- self.max_x = rospy.get_param("~max_x", 0.2)
- self.min_y = rospy.get_param("~min_y", -0.3)
- self.max_y = rospy.get_param("~max_y", 0.5)
- self.max_z = rospy.get_param("~max_z", 1.2)
-
- # The goal distance (in meters) to keep between the robot and the person
- self.goal_z = rospy.get_param("~goal_z", 0.6)
-
- # How far away from the goal distance (in meters) before the robot reacts
- self.z_threshold = rospy.get_param("~z_threshold", 0.05)
-
- # How far away from being centered (x displacement) on the person
- # before the robot reacts
- self.x_threshold = rospy.get_param("~x_threshold", 0.05)
-
- # How much do we weight the goal distance (z) when making a movement
- self.z_scale = rospy.get_param("~z_scale", 1.0)
- # How much do we weight left/right displacement of the person when making a movement
- self.x_scale = rospy.get_param("~x_scale", 2.5)
-
- # The maximum rotation speed in radians per second
- self.max_angular_speed = rospy.get_param("~max_angular_speed", 2.0)
-
- # The minimum rotation speed in radians per second
- self.min_angular_speed = rospy.get_param("~min_angular_speed", 0.0)
-
- # The max linear speed in meters per second
- self.max_linear_speed = rospy.get_param("~max_linear_speed", 0.3)
-
- # The minimum linear speed in meters per second
- self.min_linear_speed = rospy.get_param("~min_linear_speed", 0.1)
-
- # Slow down factor when stopping
- self.slow_down_factor = rospy.get_param("~slow_down_factor", 0.8)
-
- # Initialize the movement command
- self.move_cmd = Twist()
- # Publisher to control the robot's movement
- self.cmd_vel_pub = rospy.Publisher('cmd_vel', Twist, queue_size=5)
- # Subscribe to the point cloud
- self.depth_subscriber = rospy.Subscriber('point_cloud', PointCloud2, self.set_cmd_vel, queue_size=1)
- rospy.loginfo("Subscribing to point cloud...")
-
- # Wait for the pointcloud topic to become available
- rospy.wait_for_message('point_cloud', PointCloud2)
- rospy.loginfo("Ready to follow!")
-
- def set_cmd_vel(self, msg):
- # Initialize the centroid coordinates point count
- x = y = z = n = 0
- # Read in the x, y, z coordinates of all points in the cloud
- for point in point_cloud2.read_points(msg, skip_nans=True):
- pt_x = point[0]
- pt_y = point[1]
- pt_z = point[2]
-
- # Keep only those points within our designated boundaries and sum them up
- if -pt_y > self.min_y and -pt_y < self.max_y and pt_x < self.max_x and pt_x > self.min_x and pt_z < self.max_z:
- x += pt_x
- y += pt_y
- z += pt_z
- n += 1
-
- # If we have points, compute the centroid coordinates
- if n:
- x /= n
- y /= n
- z /= n
-
- # Check our movement thresholds
- if (abs(z - self.goal_z) > self.z_threshold):
- # Compute the angular component of the movement
- linear_speed = (z - self.goal_z) * self.z_scale
-
- # Make sure we meet our min/max specifications
- self.move_cmd.linear.x = copysign(max(self.min_linear_speed,
- min(self.max_linear_speed, abs(linear_speed))), linear_speed)
- else:
- self.move_cmd.linear.x *= self.slow_down_factor
-
- if (abs(x) > self.x_threshold):
- # Compute the linear component of the movement
- angular_speed = -x * self.x_scale
-
- # Make sure we meet our min/max specifications
- self.move_cmd.angular.z = copysign(max(self.min_angular_speed,
- min(self.max_angular_speed, abs(angular_speed))), angular_speed)
- else:
- # Stop the rotation smoothly
- self.move_cmd.angular.z *= self.slow_down_factor
-
- else:
- # Stop the robot smoothly
- self.move_cmd.linear.x *= self.slow_down_factor
- self.move_cmd.angular.z *= self.slow_down_factor
-
- # Publish the movement command
- self.cmd_vel_pub.publish(self.move_cmd)
-
- def shutdown(self):
- rospy.loginfo("Stopping the robot...")
-
- # Unregister the subscriber to stop cmd_vel publishing
- self.depth_subscriber.unregister()
- rospy.sleep(1)
-
- # Send an emtpy Twist message to stop the robot
- self.cmd_vel_pub.publish(Twist())
- rospy.sleep(1)
-
- if __name__ == '__main__':
- try:
- Follower()
- rospy.spin()
- except rospy.ROSInterruptException:
- rospy.loginfo("Follower node terminated.")
|