123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- close all
- clc
- import gtsam.*;
- disp('Example of application of ISAM2 for visual-inertial navigation on the KITTI VISION BENCHMARK SUITE (http://www.computervisiononline.com/dataset/kitti-vision-benchmark-suite)')
- %% Read metadata and compute relative sensor pose transforms
- % IMU metadata
- disp('-- Reading sensor metadata')
- IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt');
- IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2);
- IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz;
- IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]);
- if ~IMUinBody.equals(Pose3, 1e-5)
- error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same';
- end
- % VO metadata
- VO_metadata = importdata('KittiRelativePose_metadata.txt');
- VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2);
- VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz;
- VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]);
- VOinIMU = IMUinBody.inverse().compose(VOinBody);
- %% Read data and change coordinate frame of GPS and VO measurements to IMU frame
- disp('-- Reading sensor data from file')
- % IMU data
- IMU_data = importdata('KittiEquivBiasedImu.txt');
- IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2);
- imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false);
- [IMU_data.acc_omega] = deal(imum{:});
- clear imum
- % VO data
- VO_data = importdata('KittiRelativePose.txt');
- VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2);
- % Merge relative pose fields and convert to Pose3
- logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ];
- logposes = num2cell(logposes, 2);
- relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes);
- relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes);
- [VO_data.RelativePose] = deal(relposes{:});
- VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' });
- noiseModelVO = noiseModel.Diagonal.Sigmas([ VO_metadata.RotationSigma * [1;1;1]; VO_metadata.TranslationSigma * [1;1;1] ]);
- clear logposes relposes
- %% Get initial conditions for the estimated trajectory
- currentPoseGlobal = Pose3;
- currentVelocityGlobal = LieVector([0;0;0]); % the vehicle is stationary at the beginning
- currentBias = imuBias.ConstantBias(zeros(3,1), zeros(3,1));
- sigma_init_x = noiseModel.Isotropic.Sigmas([ 1.0; 1.0; 0.01; 0.01; 0.01; 0.01 ]);
- sigma_init_v = noiseModel.Isotropic.Sigma(3, 1000.0);
- sigma_init_b = noiseModel.Isotropic.Sigmas([ 0.100; 0.100; 0.100; 5.00e-05; 5.00e-05; 5.00e-05 ]);
- sigma_between_b = [ IMU_metadata.AccelerometerBiasSigma * ones(3,1); IMU_metadata.GyroscopeBiasSigma * ones(3,1) ];
- g = [0;0;-9.8];
- w_coriolis = [0;0;0];
- %% Solver object
- isamParams = ISAM2Params;
- isamParams.setFactorization('CHOLESKY');
- isamParams.setRelinearizeSkip(10);
- isam = gtsam.ISAM2(isamParams);
- newFactors = NonlinearFactorGraph;
- newValues = Values;
- %% Main loop:
- % (1) we read the measurements
- % (2) we create the corresponding factors in the graph
- % (3) we solve the graph to obtain and optimal estimate of robot trajectory
- timestamps = [VO_data.Time]';
- timestamps = timestamps(15:end,:); % there seem to be issues with the initial IMU measurements
- IMUtimes = [IMU_data.Time];
- disp('-- Starting main loop: inference is performed at each time step, but we plot trajectory every 100 steps')
- for measurementIndex = 1:length(timestamps)
-
- % At each non=IMU measurement we initialize a new node in the graph
- currentPoseKey = symbol('x',measurementIndex);
- currentVelKey = symbol('v',measurementIndex);
- currentBiasKey = symbol('b',measurementIndex);
- t = timestamps(measurementIndex, 1);
-
- if measurementIndex == 1
- %% Create initial estimate and prior on initial pose, velocity, and biases
- newValues.insert(currentPoseKey, currentPoseGlobal);
- newValues.insert(currentVelKey, currentVelocityGlobal);
- newValues.insert(currentBiasKey, currentBias);
- newFactors.add(PriorFactorPose3(currentPoseKey, currentPoseGlobal, sigma_init_x));
- newFactors.add(PriorFactorLieVector(currentVelKey, currentVelocityGlobal, sigma_init_v));
- newFactors.add(PriorFactorConstantBias(currentBiasKey, currentBias, sigma_init_b));
- else
- t_previous = timestamps(measurementIndex-1, 1);
- %% Summarize IMU data between the previous GPS measurement and now
- IMUindices = find(IMUtimes >= t_previous & IMUtimes <= t);
-
- currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ...
- currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ...
- IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3));
-
- for imuIndex = IMUindices
- accMeas = [ IMU_data(imuIndex).accelX; IMU_data(imuIndex).accelY; IMU_data(imuIndex).accelZ ];
- omegaMeas = [ IMU_data(imuIndex).omegaX; IMU_data(imuIndex).omegaY; IMU_data(imuIndex).omegaZ ];
- deltaT = IMU_data(imuIndex).dt;
- currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT);
- end
-
- % Create IMU factor
- newFactors.add(ImuFactor( ...
- currentPoseKey-1, currentVelKey-1, ...
- currentPoseKey, currentVelKey, ...
- currentBiasKey, currentSummarizedMeasurement, g, w_coriolis));
-
- % LC: sigma_init_b is wrong: this should be some uncertainty on bias evolution given in the IMU metadata
- newFactors.add(BetweenFactorConstantBias(currentBiasKey-1, currentBiasKey, imuBias.ConstantBias(zeros(3,1), zeros(3,1)), ...
- noiseModel.Diagonal.Sigmas(sqrt(numel(IMUindices)) * sigma_between_b)));
-
- %% Create VO factor
- VOpose = VO_data(measurementIndex).RelativePose;
- newFactors.add(BetweenFactorPose3(currentPoseKey - 1, currentPoseKey, VOpose, noiseModelVO));
-
- % Add initial value
- newValues.insert(currentPoseKey, currentPoseGlobal.compose(VOpose));
- newValues.insert(currentVelKey, currentVelocityGlobal);
- newValues.insert(currentBiasKey, currentBias);
-
- % Update solver
- % =======================================================================
- isam.update(newFactors, newValues);
- newFactors = NonlinearFactorGraph;
- newValues = Values;
-
- if rem(measurementIndex,100)==0 % plot every 100 time steps
- cla;
- plot3DTrajectory(isam.calculateEstimate, 'g-');
- title('Estimated trajectory using ISAM2 (IMU+VO)')
- xlabel('[m]')
- ylabel('[m]')
- zlabel('[m]')
- axis equal
- drawnow;
- end
- % =======================================================================
- currentPoseGlobal = isam.calculateEstimate(currentPoseKey);
- currentVelocityGlobal = isam.calculateEstimate(currentVelKey);
- currentBias = isam.calculateEstimate(currentBiasKey);
- end
-
- end % end main loop
- disp('-- Reached end of sensor data')
|