123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- /* ----------------------------------------------------------------------------
- * GTSAM Copyright 2010, Georgia Tech Research Corporation,
- * Atlanta, Georgia 30332-0415
- * All Rights Reserved
- * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
- * See LICENSE for the license information
- * -------------------------------------------------------------------------- */
- /**
- * @file SelfCalibrationExample.cpp
- * @brief Based on VisualSLAMExample, but with unknown (yet fixed) calibration.
- * @author Frank Dellaert
- */
- /*
- * See the detailed documentation in Visual SLAM.
- * The only documentation below with deal with the self-calibration.
- */
- // For loading the data
- #include "SFMdata.h"
- // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
- #include <gtsam/geometry/Point2.h>
- // Inference and optimization
- #include <gtsam/inference/Symbol.h>
- #include <gtsam/nonlinear/NonlinearFactorGraph.h>
- #include <gtsam/nonlinear/DoglegOptimizer.h>
- #include <gtsam/nonlinear/Values.h>
- // SFM-specific factors
- #include <gtsam/slam/GeneralSFMFactor.h> // does calibration !
- // Standard headers
- #include <vector>
- using namespace std;
- using namespace gtsam;
- int main(int argc, char* argv[]) {
- // Create the set of ground-truth
- vector<Point3> points = createPoints();
- vector<Pose3> poses = createPoses();
- // Create the factor graph
- NonlinearFactorGraph graph;
- // Add a prior on pose x1.
- auto poseNoise = noiseModel::Diagonal::Sigmas(
- (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3))
- .finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
- graph.addPrior(Symbol('x', 0), poses[0], poseNoise);
- // Simulated measurements from each camera pose, adding them to the factor
- // graph
- Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0);
- auto measurementNoise =
- noiseModel::Isotropic::Sigma(2, 1.0);
- for (size_t i = 0; i < poses.size(); ++i) {
- for (size_t j = 0; j < points.size(); ++j) {
- PinholeCamera<Cal3_S2> camera(poses[i], K);
- Point2 measurement = camera.project(points[j]);
- // The only real difference with the Visual SLAM example is that here we
- // use a different factor type, that also calculates the Jacobian with
- // respect to calibration
- graph.emplace_shared<GeneralSFMFactor2<Cal3_S2> >(
- measurement, measurementNoise, Symbol('x', i), Symbol('l', j),
- Symbol('K', 0));
- }
- }
- // Add a prior on the position of the first landmark.
- auto pointNoise =
- noiseModel::Isotropic::Sigma(3, 0.1);
- graph.addPrior(Symbol('l', 0), points[0],
- pointNoise); // add directly to graph
- // Add a prior on the calibration.
- auto calNoise = noiseModel::Diagonal::Sigmas(
- (Vector(5) << 500, 500, 0.1, 100, 100).finished());
- graph.addPrior(Symbol('K', 0), K, calNoise);
- // Create the initial estimate to the solution
- // now including an estimate on the camera calibration parameters
- Values initialEstimate;
- initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0));
- for (size_t i = 0; i < poses.size(); ++i)
- initialEstimate.insert(
- Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25),
- Point3(0.05, -0.10, 0.20))));
- for (size_t j = 0; j < points.size(); ++j)
- initialEstimate.insert<Point3>(Symbol('l', j),
- points[j] + Point3(-0.25, 0.20, 0.15));
- /* Optimize the graph and print results */
- Values result = DoglegOptimizer(graph, initialEstimate).optimize();
- result.print("Final results:\n");
- return 0;
- }
|