/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SelfCalibrationExample.cpp * @brief Based on VisualSLAMExample, but with unknown (yet fixed) calibration. * @author Frank Dellaert */ /* * See the detailed documentation in Visual SLAM. * The only documentation below with deal with the self-calibration. */ // For loading the data #include "SFMdata.h" // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y). #include // Inference and optimization #include #include #include #include // SFM-specific factors #include // does calibration ! // Standard headers #include using namespace std; using namespace gtsam; int main(int argc, char* argv[]) { // Create the set of ground-truth vector points = createPoints(); vector poses = createPoses(); // Create the factor graph NonlinearFactorGraph graph; // Add a prior on pose x1. auto poseNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)) .finished()); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw graph.addPrior(Symbol('x', 0), poses[0], poseNoise); // Simulated measurements from each camera pose, adding them to the factor // graph Cal3_S2 K(50.0, 50.0, 0.0, 50.0, 50.0); auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); for (size_t i = 0; i < poses.size(); ++i) { for (size_t j = 0; j < points.size(); ++j) { PinholeCamera camera(poses[i], K); Point2 measurement = camera.project(points[j]); // The only real difference with the Visual SLAM example is that here we // use a different factor type, that also calculates the Jacobian with // respect to calibration graph.emplace_shared >( measurement, measurementNoise, Symbol('x', i), Symbol('l', j), Symbol('K', 0)); } } // Add a prior on the position of the first landmark. auto pointNoise = noiseModel::Isotropic::Sigma(3, 0.1); graph.addPrior(Symbol('l', 0), points[0], pointNoise); // add directly to graph // Add a prior on the calibration. auto calNoise = noiseModel::Diagonal::Sigmas( (Vector(5) << 500, 500, 0.1, 100, 100).finished()); graph.addPrior(Symbol('K', 0), K, calNoise); // Create the initial estimate to the solution // now including an estimate on the camera calibration parameters Values initialEstimate; initialEstimate.insert(Symbol('K', 0), Cal3_S2(60.0, 60.0, 0.0, 45.0, 45.0)); for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert( Symbol('x', i), poses[i].compose(Pose3(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)))); for (size_t j = 0; j < points.size(); ++j) initialEstimate.insert(Symbol('l', j), points[j] + Point3(-0.25, 0.20, 0.15)); /* Optimize the graph and print results */ Values result = DoglegOptimizer(graph, initialEstimate).optimize(); result.print("Final results:\n"); return 0; }