LieGroups.lyx 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971
  1. #LyX 2.1 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 474
  3. \begin_document
  4. \begin_header
  5. \textclass article
  6. \use_default_options false
  7. \begin_modules
  8. theorems-std
  9. \end_modules
  10. \maintain_unincluded_children false
  11. \language english
  12. \language_package default
  13. \inputencoding auto
  14. \fontencoding global
  15. \font_roman times
  16. \font_sans default
  17. \font_typewriter default
  18. \font_math auto
  19. \font_default_family rmdefault
  20. \use_non_tex_fonts false
  21. \font_sc false
  22. \font_osf false
  23. \font_sf_scale 100
  24. \font_tt_scale 100
  25. \graphics default
  26. \default_output_format default
  27. \output_sync 0
  28. \bibtex_command default
  29. \index_command default
  30. \paperfontsize 12
  31. \spacing single
  32. \use_hyperref false
  33. \papersize default
  34. \use_geometry true
  35. \use_package amsmath 1
  36. \use_package amssymb 1
  37. \use_package cancel 1
  38. \use_package esint 0
  39. \use_package mathdots 1
  40. \use_package mathtools 1
  41. \use_package mhchem 1
  42. \use_package stackrel 1
  43. \use_package stmaryrd 1
  44. \use_package undertilde 1
  45. \cite_engine basic
  46. \cite_engine_type default
  47. \biblio_style plain
  48. \use_bibtopic false
  49. \use_indices false
  50. \paperorientation portrait
  51. \suppress_date false
  52. \justification true
  53. \use_refstyle 0
  54. \index Index
  55. \shortcut idx
  56. \color #008000
  57. \end_index
  58. \leftmargin 1in
  59. \topmargin 1in
  60. \rightmargin 1in
  61. \bottommargin 1in
  62. \secnumdepth 3
  63. \tocdepth 3
  64. \paragraph_separation indent
  65. \paragraph_indentation default
  66. \quotes_language english
  67. \papercolumns 1
  68. \papersides 1
  69. \paperpagestyle default
  70. \tracking_changes false
  71. \output_changes false
  72. \html_math_output 0
  73. \html_css_as_file 0
  74. \html_be_strict false
  75. \end_header
  76. \begin_body
  77. \begin_layout Title
  78. Lie Groups for Beginners
  79. \end_layout
  80. \begin_layout Author
  81. Frank Dellaert
  82. \end_layout
  83. \begin_layout Standard
  84. \begin_inset CommandInset include
  85. LatexCommand include
  86. filename "macros.lyx"
  87. \end_inset
  88. \end_layout
  89. \begin_layout Section
  90. Motivation: Rigid Motions in the Plane
  91. \end_layout
  92. \begin_layout Standard
  93. We will start with a small example of a robot moving in a plane, parameterized
  94. by a
  95. \emph on
  96. 2D pose
  97. \emph default
  98. \begin_inset Formula $(x,\,y,\,\theta)$
  99. \end_inset
  100. .
  101. When we give it a small forward velocity
  102. \begin_inset Formula $v_{x}$
  103. \end_inset
  104. , we know that the location changes as
  105. \begin_inset Formula
  106. \[
  107. \dot{x}=v_{x}
  108. \]
  109. \end_inset
  110. The solution to this trivial differential equation is, with
  111. \begin_inset Formula $x_{0}$
  112. \end_inset
  113. the initial
  114. \begin_inset Formula $x$
  115. \end_inset
  116. -position of the robot,
  117. \begin_inset Formula
  118. \[
  119. x_{t}=x_{0}+v_{x}t
  120. \]
  121. \end_inset
  122. A similar story holds for translation in the
  123. \begin_inset Formula $y$
  124. \end_inset
  125. direction, and in fact for translations in general:
  126. \begin_inset Formula
  127. \[
  128. (x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0})
  129. \]
  130. \end_inset
  131. Similarly for rotation we have
  132. \begin_inset Formula
  133. \[
  134. (x_{t},\,y_{t},\,\theta_{t})=(x_{0},\,y_{0},\,\theta_{0}+\omega t)
  135. \]
  136. \end_inset
  137. where
  138. \begin_inset Formula $\omega$
  139. \end_inset
  140. is angular velocity, measured in
  141. \begin_inset Formula $rad/s$
  142. \end_inset
  143. in counterclockwise direction.
  144. \end_layout
  145. \begin_layout Standard
  146. \begin_inset Float figure
  147. placement h
  148. wide false
  149. sideways false
  150. status collapsed
  151. \begin_layout Plain Layout
  152. \align center
  153. \begin_inset Graphics
  154. filename images/circular.pdf
  155. \end_inset
  156. \begin_inset Caption Standard
  157. \begin_layout Plain Layout
  158. Robot moving along a circular trajectory.
  159. \end_layout
  160. \end_inset
  161. \end_layout
  162. \end_inset
  163. \end_layout
  164. \begin_layout Standard
  165. However, if we combine translation and rotation, the story breaks down!
  166. We cannot write
  167. \begin_inset Formula
  168. \[
  169. (x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0}+\omega t)
  170. \]
  171. \end_inset
  172. The reason is that, if we move the robot a tiny bit according to the velocity
  173. vector
  174. \begin_inset Formula $(v_{x},\,v_{y},\,\omega)$
  175. \end_inset
  176. , we have (to first order)
  177. \begin_inset Formula
  178. \[
  179. (x_{\delta},\,y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\,y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)
  180. \]
  181. \end_inset
  182. but now the robot has rotated, and for the next incremental change, the
  183. velocity vector would have to be rotated before it can be applied.
  184. In fact, the robot will move on a
  185. \emph on
  186. circular
  187. \emph default
  188. trajectory.
  189. \end_layout
  190. \begin_layout Standard
  191. The reason is that
  192. \emph on
  193. translation and rotation do not commute
  194. \emph default
  195. : if we rotate and then move we will end up in a different place than if
  196. we moved first, then rotated.
  197. In fact, someone once said (I forget who, kudos for who can track down
  198. the exact quote):
  199. \end_layout
  200. \begin_layout Quote
  201. If rotation and translation commuted, we could do all rotations before leaving
  202. home.
  203. \end_layout
  204. \begin_layout Standard
  205. \begin_inset Float figure
  206. placement h
  207. wide false
  208. sideways false
  209. status open
  210. \begin_layout Plain Layout
  211. \align center
  212. \begin_inset Graphics
  213. filename images/n-steps.pdf
  214. \end_inset
  215. \begin_inset Caption Standard
  216. \begin_layout Plain Layout
  217. \begin_inset CommandInset label
  218. LatexCommand label
  219. name "fig:n-step-program"
  220. \end_inset
  221. Approximating a circular trajectory with
  222. \begin_inset Formula $n$
  223. \end_inset
  224. steps.
  225. \end_layout
  226. \end_inset
  227. \end_layout
  228. \end_inset
  229. To make progress, we have to be more precise about how the robot behaves.
  230. Specifically, let us define composition of two poses
  231. \begin_inset Formula $T_{1}$
  232. \end_inset
  233. and
  234. \begin_inset Formula $T_{2}$
  235. \end_inset
  236. as
  237. \begin_inset Formula
  238. \[
  239. T_{1}T_{2}=(x_{1},\,y_{1},\,\theta_{1})(x_{2},\,y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\,y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})
  240. \]
  241. \end_inset
  242. This is a bit clumsy, so we resort to a trick: embed the 2D poses in the
  243. space of
  244. \begin_inset Formula $3\times3$
  245. \end_inset
  246. matrices, so we can define composition as matrix multiplication:
  247. \begin_inset Formula
  248. \[
  249. T_{1}T_{2}=\left[\begin{array}{cc}
  250. R_{1} & t_{1}\\
  251. 0 & 1
  252. \end{array}\right]\left[\begin{array}{cc}
  253. R_{2} & t_{2}\\
  254. 0 & 1
  255. \end{array}\right]=\left[\begin{array}{cc}
  256. R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
  257. 0 & 1
  258. \end{array}\right]
  259. \]
  260. \end_inset
  261. where the matrices
  262. \begin_inset Formula $R$
  263. \end_inset
  264. are 2D rotation matrices defined as
  265. \begin_inset Formula
  266. \[
  267. R=\left[\begin{array}{cc}
  268. \cos\theta & -\sin\theta\\
  269. \sin\theta & \cos\theta
  270. \end{array}\right]
  271. \]
  272. \end_inset
  273. Now a
  274. \begin_inset Quotes eld
  275. \end_inset
  276. tiny
  277. \begin_inset Quotes erd
  278. \end_inset
  279. motion of the robot can be written as
  280. \begin_inset Formula
  281. \[
  282. T(\delta)=\left[\begin{array}{ccc}
  283. \cos\omega\delta & -\sin\omega\delta & v_{x}\delta\\
  284. \sin\omega\delta & \cos\omega\delta & v_{y}\delta\\
  285. 0 & 0 & 1
  286. \end{array}\right]\approx\left[\begin{array}{ccc}
  287. 1 & -\omega\delta & v_{x}\delta\\
  288. \omega\delta & 1 & v_{y}\delta\\
  289. 0 & 0 & 1
  290. \end{array}\right]=I+\delta\left[\begin{array}{ccc}
  291. 0 & -\omega & v_{x}\\
  292. \omega & 0 & v_{y}\\
  293. 0 & 0 & 0
  294. \end{array}\right]
  295. \]
  296. \end_inset
  297. Let us define the
  298. \emph on
  299. 2D twist
  300. \emph default
  301. vector
  302. \begin_inset Formula $\xi=(v,\omega)$
  303. \end_inset
  304. , and the matrix above as
  305. \begin_inset Formula
  306. \[
  307. \xihat\define\left[\begin{array}{ccc}
  308. 0 & -\omega & v_{x}\\
  309. \omega & 0 & v_{y}\\
  310. 0 & 0 & 0
  311. \end{array}\right]
  312. \]
  313. \end_inset
  314. If we wanted
  315. \begin_inset Formula $t$
  316. \end_inset
  317. to be large, we could split up
  318. \begin_inset Formula $t$
  319. \end_inset
  320. into smaller timesteps, say
  321. \begin_inset Formula $n$
  322. \end_inset
  323. of them, and compose them as follows:
  324. \begin_inset Formula
  325. \[
  326. T(t)\approx\left(I+\frac{t}{n}\xihat\right)\ldots\mbox{n times}\ldots\left(I+\frac{t}{n}\xihat\right)=\left(I+\frac{t}{n}\xihat\right)^{n}
  327. \]
  328. \end_inset
  329. The result is shown in Figure
  330. \begin_inset CommandInset ref
  331. LatexCommand ref
  332. reference "fig:n-step-program"
  333. \end_inset
  334. .
  335. \end_layout
  336. \begin_layout Standard
  337. Of course, the perfect solution would be obtained if we take
  338. \begin_inset Formula $n$
  339. \end_inset
  340. to infinity:
  341. \begin_inset Formula
  342. \[
  343. T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}
  344. \]
  345. \end_inset
  346. For real numbers, this series is familiar and is actually a way to compute
  347. the exponential function:
  348. \begin_inset Formula
  349. \[
  350. e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}
  351. \]
  352. \end_inset
  353. The series can be similarly defined for square matrices, and the final result
  354. is that we can write the motion of a robot along a circular trajectory,
  355. resulting from the 2D twist
  356. \begin_inset Formula $\xi=(v,\omega)$
  357. \end_inset
  358. \begin_inset Formula $ $
  359. \end_inset
  360. as the
  361. \emph on
  362. matrix exponential
  363. \emph default
  364. of
  365. \begin_inset Formula $\xihat$
  366. \end_inset
  367. :
  368. \begin_inset Formula
  369. \[
  370. T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}
  371. \]
  372. \end_inset
  373. We call this mapping from 2D twists matrices
  374. \begin_inset Formula $\xihat$
  375. \end_inset
  376. to 2D rigid transformations the
  377. \emph on
  378. exponential map.
  379. \end_layout
  380. \begin_layout Standard
  381. The above has all elements of Lie group theory.
  382. We call the space of 2D rigid transformations, along with the composition
  383. operation, the
  384. \emph on
  385. special Euclidean group
  386. \emph default
  387. \begin_inset Formula $\SEtwo$
  388. \end_inset
  389. .
  390. It is called a Lie group because it is simultaneously a topological group
  391. and a manifold, which implies that the multiplication and the inversion
  392. operations are smooth.
  393. The space of 2D twists, together with a special binary operation to be
  394. defined below, is called the Lie algebra
  395. \begin_inset Formula $\setwo$
  396. \end_inset
  397. associated with
  398. \begin_inset Formula $\SEtwo$
  399. \end_inset
  400. .
  401. \end_layout
  402. \begin_layout Standard
  403. \begin_inset Newpage pagebreak
  404. \end_inset
  405. \end_layout
  406. \begin_layout Section
  407. Basic Lie Group Concepts
  408. \end_layout
  409. \begin_layout Standard
  410. We now define the concepts illustrated above, introduce some notation, and
  411. see what we can say in general.
  412. After this we then introduce the most commonly used Lie groups and their
  413. Lie algebras.
  414. \end_layout
  415. \begin_layout Subsection
  416. A Manifold and a Group
  417. \end_layout
  418. \begin_layout Standard
  419. A
  420. \series bold
  421. Lie group
  422. \series default
  423. \begin_inset Formula $G$
  424. \end_inset
  425. is both a group
  426. \emph on
  427. and
  428. \emph default
  429. a manifold that possesses a smooth group operation.
  430. Associated with it is a
  431. \series bold
  432. Lie Algebra
  433. \series default
  434. \begin_inset Formula $\gg$
  435. \end_inset
  436. which, loosely speaking, can be identified with the tangent space at the
  437. identity and completely defines how the groups behaves around the identity.
  438. There is a mapping from
  439. \begin_inset Formula $\gg$
  440. \end_inset
  441. back to
  442. \begin_inset Formula $G$
  443. \end_inset
  444. , called the
  445. \series bold
  446. exponential map
  447. \series default
  448. \begin_inset Formula
  449. \[
  450. \exp:\gg\rightarrow G
  451. \]
  452. \end_inset
  453. which is typically a many-to-one mapping.
  454. The corresponding inverse can be define locally around the origin and hence
  455. is a
  456. \begin_inset Quotes eld
  457. \end_inset
  458. logarithm
  459. \begin_inset Quotes erd
  460. \end_inset
  461. \begin_inset Formula
  462. \[
  463. \log:G\rightarrow\gg
  464. \]
  465. \end_inset
  466. that maps elements in a neighborhood of
  467. \begin_inset Formula $id$
  468. \end_inset
  469. in G to an element in
  470. \begin_inset Formula $\gg$
  471. \end_inset
  472. .
  473. \end_layout
  474. \begin_layout Standard
  475. An important family of Lie groups are the matrix Lie groups, whose elements
  476. are
  477. \begin_inset Formula $n\times n$
  478. \end_inset
  479. invertible matrices.
  480. The set of all such matrices, together with the matrix multiplication,
  481. is called the general linear group
  482. \begin_inset Formula $GL(n)$
  483. \end_inset
  484. of dimension
  485. \begin_inset Formula $n$
  486. \end_inset
  487. , and any closed subgroup of it is a
  488. \series bold
  489. matrix Lie group
  490. \series default
  491. .
  492. Most if not all Lie groups we are interested in will be matrix Lie groups.
  493. \end_layout
  494. \begin_layout Subsection
  495. Lie Algebra
  496. \end_layout
  497. \begin_layout Standard
  498. The Lie Algebra
  499. \begin_inset Formula $\gg$
  500. \end_inset
  501. is called an algebra because it is endowed with a binary operation, the
  502. \series bold
  503. Lie bracket
  504. \series default
  505. \begin_inset Formula $[X,Y]$
  506. \end_inset
  507. , the properties of which are closely related to the group operation of
  508. \begin_inset Formula $G$
  509. \end_inset
  510. .
  511. For example, for algebras associated with matrix Lie groups, the Lie bracket
  512. is given by
  513. \begin_inset Formula $[A,B]\define AB-BA$
  514. \end_inset
  515. .
  516. \end_layout
  517. \begin_layout Standard
  518. The relationship of the Lie bracket to the group operation is as follows:
  519. for commutative Lie groups vector addition
  520. \begin_inset Formula $X+Y$
  521. \end_inset
  522. in
  523. \begin_inset Formula $\gg$
  524. \end_inset
  525. mimicks the group operation.
  526. For example, if we have
  527. \begin_inset Formula $Z=X+Y$
  528. \end_inset
  529. in
  530. \begin_inset Formula $\gg$
  531. \end_inset
  532. , when mapped backed to
  533. \begin_inset Formula $G$
  534. \end_inset
  535. via the exponential map we obtain
  536. \begin_inset Formula
  537. \[
  538. e^{Z}=e^{X+Y}=e^{X}e^{Y}
  539. \]
  540. \end_inset
  541. However, this does
  542. \emph on
  543. not
  544. \emph default
  545. hold for non-commutative Lie groups:
  546. \begin_inset Formula
  547. \[
  548. Z=\log(e^{X}e^{Y})\neq X+Y
  549. \]
  550. \end_inset
  551. Instead,
  552. \begin_inset Formula $Z$
  553. \end_inset
  554. can be calculated using the Baker-Campbell-Hausdorff (BCH) formula
  555. \begin_inset CommandInset citation
  556. LatexCommand cite
  557. key "Hall00book"
  558. \end_inset
  559. \begin_inset Note Note
  560. status collapsed
  561. \begin_layout Plain Layout
  562. http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
  563. \end_layout
  564. \end_inset
  565. :
  566. \begin_inset Formula
  567. \[
  568. Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots
  569. \]
  570. \end_inset
  571. For commutative groups the bracket is zero and we recover
  572. \begin_inset Formula $Z=X+Y$
  573. \end_inset
  574. .
  575. For non-commutative groups we can use the BCH formula to approximate it.
  576. \end_layout
  577. \begin_layout Subsection
  578. Exponential Coordinates
  579. \end_layout
  580. \begin_layout Standard
  581. For
  582. \begin_inset Formula $n$
  583. \end_inset
  584. -dimensional matrix Lie groups, as a vector space the Lie algebra
  585. \begin_inset Formula $\gg$
  586. \end_inset
  587. is isomorphic to
  588. \begin_inset Formula $\mathbb{R}^{n}$
  589. \end_inset
  590. , and we can define the hat operator
  591. \begin_inset CommandInset citation
  592. LatexCommand cite
  593. after "page 41"
  594. key "Murray94book"
  595. \end_inset
  596. ,
  597. \begin_inset Formula
  598. \[
  599. \hat{}:x\in\mathbb{R}^{n}\rightarrow\xhat\in\gg
  600. \]
  601. \end_inset
  602. which maps
  603. \begin_inset Formula $n$
  604. \end_inset
  605. -vectors
  606. \begin_inset Formula $x\in\mathbb{R}^{n}$
  607. \end_inset
  608. to elements of
  609. \begin_inset Formula $\gg$
  610. \end_inset
  611. .
  612. In the case of matrix Lie groups, the elements
  613. \begin_inset Formula $\xhat$
  614. \end_inset
  615. of
  616. \begin_inset Formula $\gg$
  617. \end_inset
  618. are also
  619. \begin_inset Formula $n\times n$
  620. \end_inset
  621. matrices, and the map is given by
  622. \begin_inset Formula
  623. \begin{equation}
  624. \xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}
  625. \end{equation}
  626. \end_inset
  627. where the
  628. \begin_inset Formula $G^{i}$
  629. \end_inset
  630. are
  631. \begin_inset Formula $n\times n$
  632. \end_inset
  633. matrices known as Lie group generators.
  634. The meaning of the map
  635. \begin_inset Formula $x\rightarrow\xhat$
  636. \end_inset
  637. will depend on the group
  638. \begin_inset Formula $G$
  639. \end_inset
  640. and will generally have an intuitive interpretation.
  641. \end_layout
  642. \begin_layout Subsection
  643. Actions
  644. \end_layout
  645. \begin_layout Standard
  646. An important concept is that of a group element acting on an element of
  647. a manifold
  648. \begin_inset Formula $M$
  649. \end_inset
  650. .
  651. For example, 2D rotations act on 2D points, 3D rotations act on 3D points,
  652. etc.
  653. In particular, a
  654. \series bold
  655. left action
  656. \series default
  657. of
  658. \begin_inset Formula $G$
  659. \end_inset
  660. on
  661. \begin_inset Formula $M$
  662. \end_inset
  663. is defined as a smooth map
  664. \begin_inset Formula $\Phi:G\times M\rightarrow M$
  665. \end_inset
  666. such that
  667. \begin_inset CommandInset citation
  668. LatexCommand cite
  669. after "Appendix A"
  670. key "Murray94book"
  671. \end_inset
  672. :
  673. \end_layout
  674. \begin_layout Enumerate
  675. The identity element
  676. \begin_inset Formula $e$
  677. \end_inset
  678. has no effect, i.e.,
  679. \begin_inset Formula $\Phi(e,p)=p$
  680. \end_inset
  681. \end_layout
  682. \begin_layout Enumerate
  683. Composing two actions can be combined into one action:
  684. \begin_inset Formula $\Phi(g,\Phi(h,p))=\Phi(gh,p)$
  685. \end_inset
  686. \end_layout
  687. \begin_layout Standard
  688. The (usual) action of an
  689. \begin_inset Formula $n$
  690. \end_inset
  691. -dimensional matrix group
  692. \begin_inset Formula $G$
  693. \end_inset
  694. is matrix-vector multiplication on
  695. \begin_inset Formula $\mathbb{R}^{n}$
  696. \end_inset
  697. ,
  698. \begin_inset Formula
  699. \[
  700. q=Ap
  701. \]
  702. \end_inset
  703. with
  704. \begin_inset Formula $p,q\in\mathbb{R}^{n}$
  705. \end_inset
  706. and
  707. \begin_inset Formula $A\in G\subseteq GL(n)$
  708. \end_inset
  709. .
  710. \end_layout
  711. \begin_layout Subsection
  712. The Adjoint Map and Adjoint Representation
  713. \end_layout
  714. \begin_layout Standard
  715. Suppose a point
  716. \begin_inset Formula $p$
  717. \end_inset
  718. is specified as
  719. \begin_inset Formula $p'$
  720. \end_inset
  721. in the frame
  722. \begin_inset Formula $T$
  723. \end_inset
  724. , i.e.,
  725. \begin_inset Formula $p'=Tp$
  726. \end_inset
  727. , where
  728. \begin_inset Formula $T$
  729. \end_inset
  730. transforms from the global coordinates
  731. \begin_inset Formula $p$
  732. \end_inset
  733. to the local frame
  734. \begin_inset Formula $p'$
  735. \end_inset
  736. .
  737. To apply an action
  738. \begin_inset Formula $A$
  739. \end_inset
  740. we first need to undo
  741. \begin_inset Formula $T$
  742. \end_inset
  743. , then apply
  744. \begin_inset Formula $A$
  745. \end_inset
  746. , and then transform the result back to
  747. \begin_inset Formula $T$
  748. \end_inset
  749. :
  750. \begin_inset Formula
  751. \[
  752. q'=TAT^{-1}p'
  753. \]
  754. \end_inset
  755. The matrix
  756. \begin_inset Formula $TAT^{-1}$
  757. \end_inset
  758. is said to be conjugate to
  759. \begin_inset Formula $A$
  760. \end_inset
  761. , and this is a central element of group theory.
  762. \end_layout
  763. \begin_layout Standard
  764. In general, the
  765. \series bold
  766. adjoint map
  767. \series default
  768. \begin_inset Formula $\AAdd g$
  769. \end_inset
  770. maps a group element
  771. \begin_inset Formula $a\in G$
  772. \end_inset
  773. to its
  774. \series bold
  775. conjugate
  776. \series default
  777. \begin_inset Formula $gag^{-1}$
  778. \end_inset
  779. by
  780. \begin_inset Formula $g$
  781. \end_inset
  782. .
  783. This map captures conjugacy in the group
  784. \begin_inset Formula $G$
  785. \end_inset
  786. , but there is an equivalent notion in the Lie algebra
  787. \begin_inset Formula $\mathfrak{\gg}$
  788. \end_inset
  789. ,
  790. \begin_inset Note Note
  791. status open
  792. \begin_layout Plain Layout
  793. http://en.wikipedia.org/wiki/Exponential_map
  794. \end_layout
  795. \end_inset
  796. \begin_inset Formula
  797. \[
  798. \AAdd ge^{\xhat}=g\exp\left(\xhat\right)g^{-1}=\exp(\Ad g{\xhat})
  799. \]
  800. \end_inset
  801. where
  802. \begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$
  803. \end_inset
  804. is a map parameterized by a group element
  805. \begin_inset Formula $g$
  806. \end_inset
  807. , and is called the
  808. \emph on
  809. adjoint representation
  810. \emph default
  811. .
  812. The intuitive explanation is that a change
  813. \begin_inset Formula $\exp\left(\xhat\right)$
  814. \end_inset
  815. defined around the origin, but applied at the group element
  816. \begin_inset Formula $g$
  817. \end_inset
  818. , can be written in one step by taking the adjoint
  819. \begin_inset Formula $\Ad g{\xhat}$
  820. \end_inset
  821. of
  822. \begin_inset Formula $\xhat$
  823. \end_inset
  824. .
  825. \end_layout
  826. \begin_layout Standard
  827. In the special case of matrix Lie groups the adjoint can be written as
  828. \begin_inset Note Note
  829. status collapsed
  830. \begin_layout Plain Layout
  831. http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group
  832. \end_layout
  833. \end_inset
  834. \begin_inset Formula
  835. \[
  836. \Ad T{\xhat}\define T\xhat T^{-1}
  837. \]
  838. \end_inset
  839. and hence we have
  840. \end_layout
  841. \begin_layout Standard
  842. \begin_inset Formula
  843. \begin{equation}
  844. Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\label{eq:matrixAdjoint}
  845. \end{equation}
  846. \end_inset
  847. where both
  848. \begin_inset Formula $T\in G$
  849. \end_inset
  850. and
  851. \begin_inset Formula $\xhat\in\gg$
  852. \end_inset
  853. are
  854. \begin_inset Formula $n\times n$
  855. \end_inset
  856. matrices for an
  857. \begin_inset Formula $n$
  858. \end_inset
  859. -dimensional Lie group.
  860. \end_layout
  861. \begin_layout Standard
  862. \begin_inset Newpage pagebreak
  863. \end_inset
  864. \end_layout
  865. \begin_layout Section
  866. 2D Rotations
  867. \end_layout
  868. \begin_layout Standard
  869. We first look at a very simple group, the 2D rotations.
  870. \end_layout
  871. \begin_layout Subsection
  872. Basics
  873. \end_layout
  874. \begin_layout Standard
  875. The Lie group
  876. \begin_inset Formula $\SOtwo$
  877. \end_inset
  878. is a subgroup of the general linear group
  879. \begin_inset Formula $GL(2)$
  880. \end_inset
  881. of
  882. \begin_inset Formula $2\times2$
  883. \end_inset
  884. invertible matrices.
  885. Its Lie algebra
  886. \begin_inset Formula $\sotwo$
  887. \end_inset
  888. is the vector space of
  889. \begin_inset Formula $2\times2$
  890. \end_inset
  891. skew-symmetric matrices.
  892. Since
  893. \begin_inset Formula $\SOtwo$
  894. \end_inset
  895. is a one-dimensional manifold,
  896. \begin_inset Formula $\sotwo$
  897. \end_inset
  898. is isomorphic to
  899. \begin_inset Formula $\mathbb{R}$
  900. \end_inset
  901. and we define
  902. \begin_inset Formula
  903. \[
  904. \hat{}:\mathbb{R}\rightarrow\sotwo
  905. \]
  906. \end_inset
  907. \begin_inset Formula
  908. \[
  909. \hat{}:\omega\rightarrow\what=\skew{\omega}
  910. \]
  911. \end_inset
  912. which maps the angle
  913. \begin_inset Formula $\omega$
  914. \end_inset
  915. to the
  916. \begin_inset Formula $2\times2$
  917. \end_inset
  918. skew-symmetric matrix
  919. \family roman
  920. \series medium
  921. \shape up
  922. \size normal
  923. \emph off
  924. \bar no
  925. \noun off
  926. \color none
  927. \begin_inset Formula $\skew{\omega}$
  928. \end_inset
  929. :
  930. \family default
  931. \series default
  932. \shape default
  933. \size default
  934. \emph default
  935. \bar default
  936. \noun default
  937. \color inherit
  938. \begin_inset Formula
  939. \[
  940. \skew{\omega}=\left[\begin{array}{cc}
  941. 0 & -\omega\\
  942. \omega & 0
  943. \end{array}\right]
  944. \]
  945. \end_inset
  946. The exponential map can be computed in closed form as
  947. \begin_inset Formula
  948. \[
  949. e^{\skew{\omega}}=\left[\begin{array}{cc}
  950. \cos\omega & -\sin\omega\\
  951. \sin\omega & \cos\omega
  952. \end{array}\right]
  953. \]
  954. \end_inset
  955. \end_layout
  956. \begin_layout Subsection
  957. \begin_inset CommandInset label
  958. LatexCommand label
  959. name "sub:Diagonalized2D"
  960. \end_inset
  961. Diagonalized Form
  962. \end_layout
  963. \begin_layout Standard
  964. The matrix
  965. \begin_inset Formula $\skew 1$
  966. \end_inset
  967. can be diagonalized (see
  968. \begin_inset CommandInset citation
  969. LatexCommand cite
  970. key "Hall00book"
  971. \end_inset
  972. ) with eigenvalues
  973. \begin_inset Formula $-i$
  974. \end_inset
  975. and
  976. \begin_inset Formula $i$
  977. \end_inset
  978. , and eigenvectors
  979. \begin_inset Formula $\left[\begin{array}{c}
  980. 1\\
  981. i
  982. \end{array}\right]$
  983. \end_inset
  984. and
  985. \begin_inset Formula $\left[\begin{array}{c}
  986. i\\
  987. 1
  988. \end{array}\right]$
  989. \end_inset
  990. .
  991. Readers familiar with projective geometry will recognize these as the circular
  992. points when promoted to homogeneous coordinates.
  993. In particular:
  994. \begin_inset Formula
  995. \[
  996. \skew{\omega}=\left[\begin{array}{cc}
  997. 0 & -\omega\\
  998. \omega & 0
  999. \end{array}\right]=\left[\begin{array}{cc}
  1000. 1 & i\\
  1001. i & 1
  1002. \end{array}\right]\left[\begin{array}{cc}
  1003. -i\omega & 0\\
  1004. 0 & i\omega
  1005. \end{array}\right]\left[\begin{array}{cc}
  1006. 1 & i\\
  1007. i & 1
  1008. \end{array}\right]^{-1}
  1009. \]
  1010. \end_inset
  1011. and hence
  1012. \begin_inset Formula
  1013. \[
  1014. e^{\skew{\omega}}=\frac{1}{2}\left[\begin{array}{cc}
  1015. 1 & i\\
  1016. i & 1
  1017. \end{array}\right]\left[\begin{array}{cc}
  1018. e^{-i\omega} & 0\\
  1019. 0 & e^{i\omega}
  1020. \end{array}\right]\left[\begin{array}{cc}
  1021. 1 & -i\\
  1022. -i & 1
  1023. \end{array}\right]=\left[\begin{array}{cc}
  1024. \cos\omega & -\sin\omega\\
  1025. \sin\omega & \cos\omega
  1026. \end{array}\right]
  1027. \]
  1028. \end_inset
  1029. where the latter can be shown using
  1030. \begin_inset Formula $e^{i\omega}=\cos\omega+i\sin\omega$
  1031. \end_inset
  1032. .
  1033. \end_layout
  1034. \begin_layout Subsection
  1035. Adjoint
  1036. \end_layout
  1037. \begin_layout Standard
  1038. The adjoint for
  1039. \begin_inset Formula $\sotwo$
  1040. \end_inset
  1041. is trivially equal to the identity, as is the case for
  1042. \emph on
  1043. all
  1044. \emph default
  1045. commutative groups:
  1046. \begin_inset Formula
  1047. \begin{eqnarray*}
  1048. \Ad R\what & = & \left[\begin{array}{cc}
  1049. \cos\theta & -\sin\theta\\
  1050. \sin\theta & \cos\theta
  1051. \end{array}\right]\left[\begin{array}{cc}
  1052. 0 & -\omega\\
  1053. \omega & 0
  1054. \end{array}\right]\left[\begin{array}{cc}
  1055. \cos\theta & -\sin\theta\\
  1056. \sin\theta & \cos\theta
  1057. \end{array}\right]^{T}\\
  1058. & = & \omega\left[\begin{array}{cc}
  1059. -\sin\theta & -\cos\theta\\
  1060. \cos\theta & -\sin\theta
  1061. \end{array}\right]\left[\begin{array}{cc}
  1062. \cos\theta & \sin\theta\\
  1063. -\sin\theta & \cos\theta
  1064. \end{array}\right]=\left[\begin{array}{cc}
  1065. 0 & -\omega\\
  1066. \omega & 0
  1067. \end{array}\right]
  1068. \end{eqnarray*}
  1069. \end_inset
  1070. i.e.,
  1071. \begin_inset Formula
  1072. \[
  1073. \Ad R\what=\what
  1074. \]
  1075. \end_inset
  1076. \end_layout
  1077. \begin_layout Subsection
  1078. Actions
  1079. \end_layout
  1080. \begin_layout Standard
  1081. In the case of
  1082. \begin_inset Formula $\SOtwo$
  1083. \end_inset
  1084. the vector space is
  1085. \begin_inset Formula $\Rtwo$
  1086. \end_inset
  1087. , and the group action corresponds to rotating a point
  1088. \begin_inset Formula
  1089. \[
  1090. q=Rp
  1091. \]
  1092. \end_inset
  1093. We would now like to know what an incremental rotation parameterized by
  1094. \begin_inset Formula $\omega$
  1095. \end_inset
  1096. would do:
  1097. \begin_inset Formula
  1098. \[
  1099. q(\text{\omega})=Re^{\skew{\omega}}p
  1100. \]
  1101. \end_inset
  1102. For small angles
  1103. \begin_inset Formula $\omega$
  1104. \end_inset
  1105. we have
  1106. \begin_inset Formula
  1107. \[
  1108. e^{\skew{\omega}}\approx I+\skew{\omega}=I+\omega\skew 1
  1109. \]
  1110. \end_inset
  1111. where
  1112. \begin_inset Formula $\skew 1$
  1113. \end_inset
  1114. acts like a restricted
  1115. \begin_inset Quotes eld
  1116. \end_inset
  1117. cross product
  1118. \begin_inset Quotes erd
  1119. \end_inset
  1120. in the plane on points:
  1121. \begin_inset Formula
  1122. \begin{equation}
  1123. \skew 1\left[\begin{array}{c}
  1124. x\\
  1125. y
  1126. \end{array}\right]=R_{\pi/2}\left[\begin{array}{c}
  1127. x\\
  1128. y
  1129. \end{array}\right]=\left[\begin{array}{c}
  1130. -y\\
  1131. x
  1132. \end{array}\right]\label{eq:RestrictedCross}
  1133. \end{equation}
  1134. \end_inset
  1135. Hence the derivative of the action is given as
  1136. \begin_inset Formula
  1137. \[
  1138. \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\omega}}p\right)=R\deriv{}{\omega}\left(\omega\skew 1p\right)=RH_{p}
  1139. \]
  1140. \end_inset
  1141. where
  1142. \begin_inset Formula $H_{p}$
  1143. \end_inset
  1144. is a
  1145. \begin_inset Formula $2\times1$
  1146. \end_inset
  1147. matrix that depends on
  1148. \begin_inset Formula $p$
  1149. \end_inset
  1150. :
  1151. \begin_inset Formula
  1152. \[
  1153. H_{p}\define\skew 1p=\left[\begin{array}{c}
  1154. -p_{y}\\
  1155. p_{x}
  1156. \end{array}\right]
  1157. \]
  1158. \end_inset
  1159. \end_layout
  1160. \begin_layout Standard
  1161. \begin_inset Newpage pagebreak
  1162. \end_inset
  1163. \end_layout
  1164. \begin_layout Section
  1165. 2D Rigid Transformations
  1166. \end_layout
  1167. \begin_layout Subsection
  1168. Basics
  1169. \end_layout
  1170. \begin_layout Standard
  1171. The Lie group
  1172. \begin_inset Formula $\SEtwo$
  1173. \end_inset
  1174. is a subgroup of the general linear group
  1175. \begin_inset Formula $GL(3)$
  1176. \end_inset
  1177. of
  1178. \begin_inset Formula $3\times3$
  1179. \end_inset
  1180. invertible matrices of the form
  1181. \begin_inset Formula
  1182. \[
  1183. T\define\left[\begin{array}{cc}
  1184. R & t\\
  1185. 0 & 1
  1186. \end{array}\right]
  1187. \]
  1188. \end_inset
  1189. where
  1190. \begin_inset Formula $R\in\SOtwo$
  1191. \end_inset
  1192. is a rotation matrix and
  1193. \begin_inset Formula $t\in\Rtwo$
  1194. \end_inset
  1195. is a translation vector.
  1196. \begin_inset Formula $\SEtwo$
  1197. \end_inset
  1198. is the
  1199. \emph on
  1200. semi-direct product
  1201. \emph default
  1202. of
  1203. \begin_inset Formula $\Rtwo$
  1204. \end_inset
  1205. by
  1206. \begin_inset Formula $SO(2)$
  1207. \end_inset
  1208. , written as
  1209. \begin_inset Formula $\SEtwo=\Rtwo\rtimes\SOtwo$
  1210. \end_inset
  1211. .
  1212. In particular, any element
  1213. \begin_inset Formula $T$
  1214. \end_inset
  1215. of
  1216. \begin_inset Formula $\SEtwo$
  1217. \end_inset
  1218. can be written as
  1219. \begin_inset Formula
  1220. \[
  1221. T=\left[\begin{array}{cc}
  1222. 0 & t\\
  1223. 0 & 1
  1224. \end{array}\right]\left[\begin{array}{cc}
  1225. R & 0\\
  1226. 0 & 1
  1227. \end{array}\right]
  1228. \]
  1229. \end_inset
  1230. and they compose as
  1231. \begin_inset Formula
  1232. \[
  1233. T_{1}T_{2}=\left[\begin{array}{cc}
  1234. R_{1} & t_{1}\\
  1235. 0 & 1
  1236. \end{array}\right]\left[\begin{array}{cc}
  1237. R_{2} & t_{2}\\
  1238. 0 & 1
  1239. \end{array}\right]=\left[\begin{array}{cc}
  1240. R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
  1241. 0 & 1
  1242. \end{array}\right]
  1243. \]
  1244. \end_inset
  1245. Hence, an alternative way of writing down elements of
  1246. \begin_inset Formula $\SEtwo$
  1247. \end_inset
  1248. is as the ordered pair
  1249. \begin_inset Formula $(R,\,t)$
  1250. \end_inset
  1251. , with composition defined a
  1252. \begin_inset Formula
  1253. \[
  1254. (R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
  1255. \]
  1256. \end_inset
  1257. \end_layout
  1258. \begin_layout Standard
  1259. The corresponding Lie algebra
  1260. \begin_inset Formula $\setwo$
  1261. \end_inset
  1262. is the vector space of
  1263. \begin_inset Formula $3\times3$
  1264. \end_inset
  1265. twists
  1266. \begin_inset Formula $\xihat$
  1267. \end_inset
  1268. parameterized by the
  1269. \emph on
  1270. twist coordinates
  1271. \emph default
  1272. \begin_inset Formula $\xi\in\Rthree$
  1273. \end_inset
  1274. , with the mapping
  1275. \begin_inset Formula
  1276. \[
  1277. \xi\define\left[\begin{array}{c}
  1278. v\\
  1279. \omega
  1280. \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
  1281. \skew{\omega} & v\\
  1282. 0 & 0
  1283. \end{array}\right]
  1284. \]
  1285. \end_inset
  1286. Note we think of robots as having a pose
  1287. \begin_inset Formula $(x,y,\theta)$
  1288. \end_inset
  1289. and hence I reserved the first two components for translation and the last
  1290. for rotation.
  1291. \family roman
  1292. \series medium
  1293. \shape up
  1294. \size normal
  1295. \emph off
  1296. \bar no
  1297. \noun off
  1298. \color none
  1299. The corresponding Lie group generators are
  1300. \begin_inset Formula
  1301. \[
  1302. G^{x}=\left[\begin{array}{ccc}
  1303. 0 & 0 & 1\\
  1304. 0 & 0 & 0\\
  1305. 0 & 0 & 0
  1306. \end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc}
  1307. 0 & 0 & 0\\
  1308. 0 & 0 & 1\\
  1309. 0 & 0 & 0
  1310. \end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc}
  1311. 0 & -1 & 0\\
  1312. 1 & 0 & 0\\
  1313. 0 & 0 & 0
  1314. \end{array}\right]
  1315. \]
  1316. \end_inset
  1317. \family default
  1318. \series default
  1319. \shape default
  1320. \size default
  1321. \emph default
  1322. \bar default
  1323. \noun default
  1324. \color inherit
  1325. Applying the exponential map to a twist
  1326. \begin_inset Formula $\xi$
  1327. \end_inset
  1328. yields a screw motion yielding an element in
  1329. \begin_inset Formula $\SEtwo$
  1330. \end_inset
  1331. :
  1332. \begin_inset Formula
  1333. \[
  1334. T=e^{\xihat}=\left(e^{\skew{\omega}},(I-e^{\skew{\omega}})\frac{v^{\perp}}{\omega}\right)
  1335. \]
  1336. \end_inset
  1337. \end_layout
  1338. \begin_layout Subsection
  1339. The Adjoint Map
  1340. \end_layout
  1341. \begin_layout Standard
  1342. The adjoint is
  1343. \begin_inset Formula
  1344. \begin{eqnarray}
  1345. \Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\
  1346. & = & =\left[\begin{array}{cc}
  1347. R & t\\
  1348. 0 & 1
  1349. \end{array}\right]\left[\begin{array}{cc}
  1350. \skew{\omega} & v\\
  1351. 0 & 0
  1352. \end{array}\right]\left[\begin{array}{cc}
  1353. R^{T} & -R^{T}t\\
  1354. 0 & 1
  1355. \end{array}\right]\nonumber \\
  1356. & = & \left[\begin{array}{cc}
  1357. \skew{\omega} & -\skew{\omega}t+Rv\\
  1358. 0 & 0
  1359. \end{array}\right]\nonumber \\
  1360. & = & \left[\begin{array}{cc}
  1361. \skew{\omega} & Rv-t^{\perp}\omega\\
  1362. 0 & 0
  1363. \end{array}\right]\label{eq:adjointSE2}
  1364. \end{eqnarray}
  1365. \end_inset
  1366. From this we can express the Adjoint map in terms of plane twist coordinates:
  1367. \begin_inset Formula
  1368. \[
  1369. \left[\begin{array}{c}
  1370. v'\\
  1371. \omega'
  1372. \end{array}\right]=\left[\begin{array}{cc}
  1373. R & -t^{\perp}\\
  1374. 0 & 1
  1375. \end{array}\right]\left[\begin{array}{c}
  1376. v\\
  1377. \omega
  1378. \end{array}\right]
  1379. \]
  1380. \end_inset
  1381. \end_layout
  1382. \begin_layout Subsection
  1383. Actions
  1384. \end_layout
  1385. \begin_layout Standard
  1386. The action of
  1387. \begin_inset Formula $\SEtwo$
  1388. \end_inset
  1389. on 2D points is done by embedding the points in
  1390. \begin_inset Formula $\mathbb{R}^{3}$
  1391. \end_inset
  1392. by using homogeneous coordinates
  1393. \begin_inset Formula
  1394. \[
  1395. \hat{q}=\left[\begin{array}{c}
  1396. q\\
  1397. 1
  1398. \end{array}\right]=\left[\begin{array}{cc}
  1399. R & t\\
  1400. 0 & 1
  1401. \end{array}\right]\left[\begin{array}{c}
  1402. p\\
  1403. 1
  1404. \end{array}\right]=T\hat{p}
  1405. \]
  1406. \end_inset
  1407. Analoguous to
  1408. \begin_inset Formula $\SEthree$
  1409. \end_inset
  1410. (see below), we can compute a velocity
  1411. \begin_inset Formula $\xihat\hat{p}$
  1412. \end_inset
  1413. in the local
  1414. \begin_inset Formula $T$
  1415. \end_inset
  1416. frame:
  1417. \begin_inset Formula
  1418. \[
  1419. \xihat\hat{p}=\left[\begin{array}{cc}
  1420. \skew{\omega} & v\\
  1421. 0 & 0
  1422. \end{array}\right]\left[\begin{array}{c}
  1423. p\\
  1424. 1
  1425. \end{array}\right]=\left[\begin{array}{c}
  1426. \skew{\omega}p+v\\
  1427. 0
  1428. \end{array}\right]
  1429. \]
  1430. \end_inset
  1431. By only taking the top two rows, we can write this as a velocity in
  1432. \begin_inset Formula $\Rtwo$
  1433. \end_inset
  1434. , as the product of a
  1435. \begin_inset Formula $2\times3$
  1436. \end_inset
  1437. matrix
  1438. \begin_inset Formula $H_{p}$
  1439. \end_inset
  1440. that acts upon the exponential coordinates
  1441. \begin_inset Formula $\xi$
  1442. \end_inset
  1443. directly:
  1444. \begin_inset Formula
  1445. \[
  1446. \skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc}
  1447. I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c}
  1448. v\\
  1449. \omega
  1450. \end{array}\right]=H_{p}\xi
  1451. \]
  1452. \end_inset
  1453. \end_layout
  1454. \begin_layout Standard
  1455. \begin_inset Newpage pagebreak
  1456. \end_inset
  1457. \end_layout
  1458. \begin_layout Section
  1459. 3D Rotations
  1460. \end_layout
  1461. \begin_layout Subsection
  1462. Basics
  1463. \end_layout
  1464. \begin_layout Standard
  1465. The Lie group
  1466. \begin_inset Formula $\SOthree$
  1467. \end_inset
  1468. is a subgroup of the general linear group
  1469. \begin_inset Formula $GL(3)$
  1470. \end_inset
  1471. of
  1472. \begin_inset Formula $3\times3$
  1473. \end_inset
  1474. invertible matrices.
  1475. Its Lie algebra
  1476. \begin_inset Formula $\sothree$
  1477. \end_inset
  1478. is the vector space of
  1479. \begin_inset Formula $3\times3$
  1480. \end_inset
  1481. skew-symmetric matrices
  1482. \begin_inset Formula $\what$
  1483. \end_inset
  1484. .
  1485. Since
  1486. \begin_inset Formula $\SOthree$
  1487. \end_inset
  1488. is a three-dimensional manifold,
  1489. \begin_inset Formula $\sothree$
  1490. \end_inset
  1491. is isomorphic to
  1492. \begin_inset Formula $\Rthree$
  1493. \end_inset
  1494. and we define the map
  1495. \begin_inset Formula
  1496. \[
  1497. \hat{}:\Rthree\rightarrow\sothree
  1498. \]
  1499. \end_inset
  1500. \begin_inset Formula
  1501. \[
  1502. \hat{}:\omega\rightarrow\what=\Skew{\omega}
  1503. \]
  1504. \end_inset
  1505. which maps 3-vectors
  1506. \begin_inset Formula $\omega$
  1507. \end_inset
  1508. to skew-symmetric matrices
  1509. \begin_inset Formula $\Skew{\omega}$
  1510. \end_inset
  1511. :
  1512. \begin_inset Formula
  1513. \[
  1514. \Skew{\omega}=\left[\begin{array}{ccc}
  1515. 0 & -\omega_{z} & \omega_{y}\\
  1516. \omega_{z} & 0 & -\omega_{x}\\
  1517. -\omega_{y} & \omega_{x} & 0
  1518. \end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}
  1519. \]
  1520. \end_inset
  1521. Here the matrices
  1522. \begin_inset Formula $G^{i}$
  1523. \end_inset
  1524. are the generators for
  1525. \begin_inset Formula $\SOthree$
  1526. \end_inset
  1527. ,
  1528. \begin_inset Formula
  1529. \[
  1530. G^{x}=\left(\begin{array}{ccc}
  1531. 0 & 0 & 0\\
  1532. 0 & 0 & -1\\
  1533. 0 & 1 & 0
  1534. \end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc}
  1535. 0 & 0 & 1\\
  1536. 0 & 0 & 0\\
  1537. -1 & 0 & 0
  1538. \end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc}
  1539. 0 & -1 & 0\\
  1540. 1 & 0 & 0\\
  1541. 0 & 0 & 0
  1542. \end{array}\right)
  1543. \]
  1544. \end_inset
  1545. corresponding to a rotation around
  1546. \begin_inset Formula $X$
  1547. \end_inset
  1548. ,
  1549. \begin_inset Formula $Y$
  1550. \end_inset
  1551. , and
  1552. \begin_inset Formula $Z$
  1553. \end_inset
  1554. , respectively.
  1555. The Lie bracket
  1556. \begin_inset Formula $[x,y]$
  1557. \end_inset
  1558. in
  1559. \begin_inset Formula $\sothree$
  1560. \end_inset
  1561. corresponds to the cross product
  1562. \begin_inset Formula $x\times y$
  1563. \end_inset
  1564. in
  1565. \begin_inset Formula $\Rthree$
  1566. \end_inset
  1567. .
  1568. \end_layout
  1569. \begin_layout Standard
  1570. Hence, for every
  1571. \begin_inset Formula $3$
  1572. \end_inset
  1573. -vector
  1574. \begin_inset Formula $\omega$
  1575. \end_inset
  1576. there is a corresponding rotation matrix
  1577. \begin_inset Formula
  1578. \[
  1579. R=e^{\Skew{\omega}}
  1580. \]
  1581. \end_inset
  1582. which defines a canonical parameterization of
  1583. \begin_inset Formula $\SOthree$
  1584. \end_inset
  1585. , with
  1586. \begin_inset Formula $\omega$
  1587. \end_inset
  1588. known as the canonical or exponential coordinates.
  1589. It is equivalent to the axis-angle representation for rotations, where
  1590. the unit vector
  1591. \begin_inset Formula $\omega/\theta$
  1592. \end_inset
  1593. defines the rotation axis, and its magnitude the amount of rotation
  1594. \begin_inset Formula $\theta$
  1595. \end_inset
  1596. .
  1597. \end_layout
  1598. \begin_layout Standard
  1599. The exponential map can be computed in closed form using
  1600. \series bold
  1601. Rodrigues' formula
  1602. \series default
  1603. \begin_inset CommandInset citation
  1604. LatexCommand cite
  1605. after "page 28"
  1606. key "Murray94book"
  1607. \end_inset
  1608. :
  1609. \end_layout
  1610. \begin_layout Standard
  1611. \begin_inset Formula
  1612. \begin{equation}
  1613. e^{\what}=I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}\cos\theta}{\theta^{2}}\what^{2}\label{eq:Rodrigues}
  1614. \end{equation}
  1615. \end_inset
  1616. where
  1617. \begin_inset Formula $\what^{2}=\omega\omega^{T}-I$
  1618. \end_inset
  1619. , with
  1620. \begin_inset Formula $\omega\omega^{T}$
  1621. \end_inset
  1622. the outer product of
  1623. \begin_inset Formula $\omega$
  1624. \end_inset
  1625. .
  1626. Hence, a slightly more efficient variant is
  1627. \begin_inset Formula
  1628. \begin{equation}
  1629. e^{\what}=\left(\cos\theta\right)I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}cos\theta}{\theta^{2}}\omega\omega^{T}\label{eq:Rodrigues2}
  1630. \end{equation}
  1631. \end_inset
  1632. \end_layout
  1633. \begin_layout Subsection
  1634. Diagonalized Form
  1635. \end_layout
  1636. \begin_layout Standard
  1637. Because a 3D rotation
  1638. \begin_inset Formula $R$
  1639. \end_inset
  1640. leaves the axis
  1641. \begin_inset Formula $\omega$
  1642. \end_inset
  1643. unchanged,
  1644. \begin_inset Formula $R$
  1645. \end_inset
  1646. can be diagonalized as
  1647. \begin_inset Formula
  1648. \[
  1649. R=C\left(\begin{array}{ccc}
  1650. e^{-i\theta} & 0 & 0\\
  1651. 0 & e^{i\theta} & 0\\
  1652. 0 & 0 & 1
  1653. \end{array}\right)C^{-1}
  1654. \]
  1655. \end_inset
  1656. with
  1657. \begin_inset Formula $C=\left(\begin{array}{ccc}
  1658. c_{1} & c_{2} & \omega/\theta\end{array}\right)$
  1659. \end_inset
  1660. , where
  1661. \begin_inset Formula $c_{1}$
  1662. \end_inset
  1663. and
  1664. \begin_inset Formula $c_{2}$
  1665. \end_inset
  1666. are the complex eigenvectors corresponding to the 2D rotation around
  1667. \begin_inset Formula $\omega$
  1668. \end_inset
  1669. .
  1670. This also means that, by
  1671. \begin_inset CommandInset ref
  1672. LatexCommand eqref
  1673. reference "eq:matrixAdjoint"
  1674. \end_inset
  1675. ,
  1676. \begin_inset Formula
  1677. \[
  1678. \hat{\omega}=C\left(\begin{array}{ccc}
  1679. -i\theta & 0 & 0\\
  1680. 0 & i\theta & 0\\
  1681. 0 & 0 & 0
  1682. \end{array}\right)C^{-1}
  1683. \]
  1684. \end_inset
  1685. In this case,
  1686. \begin_inset Formula $C$
  1687. \end_inset
  1688. has complex columns, but we also have
  1689. \begin_inset Formula
  1690. \begin{equation}
  1691. \hat{\omega}=B\left(\begin{array}{ccc}
  1692. 0 & -\theta & 0\\
  1693. \theta & 0 & 0\\
  1694. 0 & 0 & 0
  1695. \end{array}\right)B^{T}\label{eq:OmegaDecomposed}
  1696. \end{equation}
  1697. \end_inset
  1698. with
  1699. \begin_inset Formula $B=\left(\begin{array}{ccc}
  1700. b_{1} & b_{2} & \omega/\theta\end{array}\right)$
  1701. \end_inset
  1702. , where
  1703. \begin_inset Formula $b_{1}$
  1704. \end_inset
  1705. and
  1706. \begin_inset Formula $b_{2}$
  1707. \end_inset
  1708. form a basis for the 2D plane through the origin and perpendicular to
  1709. \begin_inset Formula $\omega$
  1710. \end_inset
  1711. .
  1712. Clearly, from Section
  1713. \begin_inset CommandInset ref
  1714. LatexCommand ref
  1715. reference "sub:Diagonalized2D"
  1716. \end_inset
  1717. , we have
  1718. \begin_inset Formula
  1719. \[
  1720. c_{1}=B\left(\begin{array}{c}
  1721. 1\\
  1722. i\\
  1723. 0
  1724. \end{array}\right)\mbox{\,\,\,\ and\,\,\,\,\,}c_{2}=B\left(\begin{array}{c}
  1725. i\\
  1726. 1\\
  1727. 0
  1728. \end{array}\right)
  1729. \]
  1730. \end_inset
  1731. and when we exponentiate
  1732. \begin_inset CommandInset ref
  1733. LatexCommand eqref
  1734. reference "eq:OmegaDecomposed"
  1735. \end_inset
  1736. we expose the 2D rotation around the axis
  1737. \begin_inset Formula $\omega/\theta$
  1738. \end_inset
  1739. with magnitude
  1740. \begin_inset Formula $\theta$
  1741. \end_inset
  1742. :
  1743. \begin_inset Formula
  1744. \[
  1745. R=B\left(\begin{array}{ccc}
  1746. \cos\theta & -\sin\theta & 0\\
  1747. \sin\theta & \cos\theta & 0\\
  1748. 0 & 0 & 1
  1749. \end{array}\right)B^{T}
  1750. \]
  1751. \end_inset
  1752. The latter form for
  1753. \begin_inset Formula $R$
  1754. \end_inset
  1755. can be used to prove Rodrigues' formula.
  1756. Expanding the above, we get
  1757. \begin_inset Formula
  1758. \[
  1759. R=\left(\cos\theta\right)\left(b_{1}b_{1}^{T}+b_{2}b_{2}^{T}\right)+\left(\sin\theta\right)\left(b_{2}b_{1}^{T}-b_{1}b_{2}^{T}\right)+\omega\omega^{T}/\theta^{2}
  1760. \]
  1761. \end_inset
  1762. \family roman
  1763. \series medium
  1764. \shape up
  1765. \size normal
  1766. \emph off
  1767. \bar no
  1768. \strikeout off
  1769. \uuline off
  1770. \uwave off
  1771. \noun off
  1772. \color none
  1773. \begin_inset Note Note
  1774. status collapsed
  1775. \begin_layout Plain Layout
  1776. \family roman
  1777. \series medium
  1778. \shape up
  1779. \size normal
  1780. \emph off
  1781. \bar no
  1782. \strikeout off
  1783. \uuline off
  1784. \uwave off
  1785. \noun off
  1786. \color none
  1787. \begin_inset Formula
  1788. \begin{eqnarray*}
  1789. R & = & \left(\begin{array}{ccc}
  1790. b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{ccc}
  1791. \cos\theta & -\sin\theta & 0\\
  1792. \sin\theta & \cos\theta & 0\\
  1793. 0 & 0 & 1
  1794. \end{array}\right)\left(\begin{array}{c}
  1795. b_{1}^{T}\\
  1796. b_{2}^{T}\\
  1797. \omega^{T}/\theta
  1798. \end{array}\right)\\
  1799. & = & \left(\begin{array}{ccc}
  1800. b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{c}
  1801. b_{1}^{T}\cos\theta-b_{2}^{T}\sin\theta\\
  1802. b_{1}^{T}\sin\theta+b_{2}^{T}\cos\theta\\
  1803. \omega^{T}/\theta
  1804. \end{array}\right)\\
  1805. & = & b_{1}b_{1}^{T}\cos\theta-b_{1}b_{2}^{T}\sin\theta+b_{2}b_{1}^{T}\sin\theta+b_{2}b_{2}^{T}\cos\theta+\omega\omega^{T}/\theta^{2}
  1806. \end{eqnarray*}
  1807. \end_inset
  1808. \end_layout
  1809. \end_inset
  1810. Because
  1811. \begin_inset Formula $B$
  1812. \end_inset
  1813. is a rotation matrix, we have
  1814. \begin_inset Formula $BB^{T}=b_{1}b_{1}^{T}+b_{2}b_{2}^{T}+\omega\omega^{T}/\theta^{2}=I$
  1815. \end_inset
  1816. , and using
  1817. \begin_inset CommandInset ref
  1818. LatexCommand eqref
  1819. reference "eq:OmegaDecomposed"
  1820. \end_inset
  1821. it is easy to show that
  1822. \begin_inset Formula $b_{2}b_{1}^{T}-b_{1}b_{2}^{T}=\hat{\omega}/\theta$
  1823. \end_inset
  1824. , hence
  1825. \family default
  1826. \series default
  1827. \shape default
  1828. \size default
  1829. \emph default
  1830. \bar default
  1831. \strikeout default
  1832. \uuline default
  1833. \uwave default
  1834. \noun default
  1835. \color inherit
  1836. \begin_inset Formula
  1837. \[
  1838. R=\left(\cos\theta\right)(I-\omega\omega^{T}/\theta^{2})+\left(\sin\theta\right)\left(\hat{\omega}/\theta\right)+\omega\omega^{T}/\theta^{2}
  1839. \]
  1840. \end_inset
  1841. which is equivalent to
  1842. \begin_inset CommandInset ref
  1843. LatexCommand eqref
  1844. reference "eq:Rodrigues2"
  1845. \end_inset
  1846. .
  1847. \end_layout
  1848. \begin_layout Subsection
  1849. The Adjoint Map
  1850. \end_layout
  1851. \begin_layout Standard
  1852. For rotation matrices
  1853. \begin_inset Formula $R$
  1854. \end_inset
  1855. we can prove the following identity (see
  1856. \begin_inset CommandInset ref
  1857. LatexCommand vref
  1858. reference "proof1"
  1859. \end_inset
  1860. ):
  1861. \begin_inset Formula
  1862. \begin{equation}
  1863. R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}
  1864. \end{equation}
  1865. \end_inset
  1866. Hence, given property
  1867. \begin_inset CommandInset ref
  1868. LatexCommand eqref
  1869. reference "eq:property1"
  1870. \end_inset
  1871. , the adjoint map for
  1872. \begin_inset Formula $\sothree$
  1873. \end_inset
  1874. simplifies to
  1875. \begin_inset Formula
  1876. \[
  1877. \Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}
  1878. \]
  1879. \end_inset
  1880. and this can be expressed in exponential coordinates simply by rotating
  1881. the axis
  1882. \begin_inset Formula $\omega$
  1883. \end_inset
  1884. to
  1885. \begin_inset Formula $R\omega$
  1886. \end_inset
  1887. .
  1888. \end_layout
  1889. \begin_layout Standard
  1890. As an example, to apply an axis-angle rotation
  1891. \begin_inset Formula $\omega$
  1892. \end_inset
  1893. to a point
  1894. \begin_inset Formula $p$
  1895. \end_inset
  1896. in the frame
  1897. \begin_inset Formula $R$
  1898. \end_inset
  1899. , we could:
  1900. \end_layout
  1901. \begin_layout Enumerate
  1902. First transform
  1903. \begin_inset Formula $p$
  1904. \end_inset
  1905. back to the world frame, apply
  1906. \begin_inset Formula $\omega$
  1907. \end_inset
  1908. , and then rotate back:
  1909. \begin_inset Formula
  1910. \[
  1911. q=Re^{\Skew{\omega}}R^{T}p
  1912. \]
  1913. \end_inset
  1914. \end_layout
  1915. \begin_layout Enumerate
  1916. Immediately apply the transformed axis-angle transformation
  1917. \begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$
  1918. \end_inset
  1919. :
  1920. \begin_inset Formula
  1921. \[
  1922. q=e^{\Skew{R\omega}}p
  1923. \]
  1924. \end_inset
  1925. \end_layout
  1926. \begin_layout Subsection
  1927. Actions
  1928. \end_layout
  1929. \begin_layout Standard
  1930. In the case of
  1931. \begin_inset Formula $\SOthree$
  1932. \end_inset
  1933. the vector space is
  1934. \begin_inset Formula $\Rthree$
  1935. \end_inset
  1936. , and the group action corresponds to rotating a point
  1937. \begin_inset Formula
  1938. \[
  1939. q=Rp
  1940. \]
  1941. \end_inset
  1942. We would now like to know what an incremental rotation parameterized by
  1943. \begin_inset Formula $\omega$
  1944. \end_inset
  1945. would do:
  1946. \begin_inset Formula
  1947. \[
  1948. q(\omega)=Re^{\Skew{\omega}}p
  1949. \]
  1950. \end_inset
  1951. hence the derivative is:
  1952. \begin_inset Formula
  1953. \[
  1954. \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p}
  1955. \]
  1956. \end_inset
  1957. To show the last equality note that
  1958. \begin_inset Formula
  1959. \[
  1960. \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
  1961. \]
  1962. \end_inset
  1963. \end_layout
  1964. \begin_layout Standard
  1965. \begin_inset Newpage pagebreak
  1966. \end_inset
  1967. \end_layout
  1968. \begin_layout Section
  1969. 3D Rigid Transformations
  1970. \end_layout
  1971. \begin_layout Standard
  1972. The Lie group
  1973. \begin_inset Formula $\SEthree$
  1974. \end_inset
  1975. is a subgroup of the general linear group
  1976. \begin_inset Formula $GL(4)$
  1977. \end_inset
  1978. of
  1979. \begin_inset Formula $4\times4$
  1980. \end_inset
  1981. invertible matrices of the form
  1982. \begin_inset Formula
  1983. \[
  1984. T\define\left[\begin{array}{cc}
  1985. R & t\\
  1986. 0 & 1
  1987. \end{array}\right]
  1988. \]
  1989. \end_inset
  1990. where
  1991. \begin_inset Formula $R\in\SOthree$
  1992. \end_inset
  1993. is a rotation matrix and
  1994. \begin_inset Formula $t\in\Rthree$
  1995. \end_inset
  1996. is a translation vector.
  1997. An alternative way of writing down elements of
  1998. \begin_inset Formula $\SEthree$
  1999. \end_inset
  2000. is as the ordered pair
  2001. \begin_inset Formula $(R,\,t)$
  2002. \end_inset
  2003. , with composition defined as
  2004. \begin_inset Formula
  2005. \[
  2006. (R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
  2007. \]
  2008. \end_inset
  2009. Its Lie algebra
  2010. \begin_inset Formula $\sethree$
  2011. \end_inset
  2012. is the vector space of
  2013. \begin_inset Formula $4\times4$
  2014. \end_inset
  2015. twists
  2016. \begin_inset Formula $\xihat$
  2017. \end_inset
  2018. parameterized by the
  2019. \emph on
  2020. twist coordinates
  2021. \emph default
  2022. \begin_inset Formula $\xi\in\Rsix$
  2023. \end_inset
  2024. , with the mapping
  2025. \begin_inset CommandInset citation
  2026. LatexCommand cite
  2027. key "Murray94book"
  2028. \end_inset
  2029. \begin_inset Formula
  2030. \[
  2031. \xi\define\left[\begin{array}{c}
  2032. \omega\\
  2033. v
  2034. \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
  2035. \Skew{\omega} & v\\
  2036. 0 & 0
  2037. \end{array}\right]
  2038. \]
  2039. \end_inset
  2040. Note we follow Frank Park's convention and reserve the first three components
  2041. for rotation, and the last three for translation.
  2042. Hence, with this parameterization, the generators for
  2043. \begin_inset Formula $\SEthree$
  2044. \end_inset
  2045. are
  2046. \begin_inset Formula
  2047. \[
  2048. G^{1}=\left(\begin{array}{cccc}
  2049. 0 & 0 & 0 & 0\\
  2050. 0 & 0 & -1 & 0\\
  2051. 0 & 1 & 0 & 0\\
  2052. 0 & 0 & 0 & 0
  2053. \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
  2054. 0 & 0 & 1 & 0\\
  2055. 0 & 0 & 0 & 0\\
  2056. -1 & 0 & 0 & 0\\
  2057. 0 & 0 & 0 & 0
  2058. \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
  2059. 0 & -1 & 0 & 0\\
  2060. 1 & 0 & 0 & 0\\
  2061. 0 & 0 & 0 & 0\\
  2062. 0 & 0 & 0 & 0
  2063. \end{array}\right)
  2064. \]
  2065. \end_inset
  2066. \begin_inset Formula
  2067. \[
  2068. G^{4}=\left(\begin{array}{cccc}
  2069. 0 & 0 & 0 & 1\\
  2070. 0 & 0 & 0 & 0\\
  2071. 0 & 0 & 0 & 0\\
  2072. 0 & 0 & 0 & 0
  2073. \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
  2074. 0 & 0 & 0 & 0\\
  2075. 0 & 0 & 0 & 1\\
  2076. 0 & 0 & 0 & 0\\
  2077. 0 & 0 & 0 & 0
  2078. \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
  2079. 0 & 0 & 0 & 0\\
  2080. 0 & 0 & 0 & 0\\
  2081. 0 & 0 & 0 & 1\\
  2082. 0 & 0 & 0 & 0
  2083. \end{array}\right)
  2084. \]
  2085. \end_inset
  2086. Applying the exponential map to a twist
  2087. \begin_inset Formula $\xi$
  2088. \end_inset
  2089. yields a screw motion yielding an element in
  2090. \begin_inset Formula $\SEthree$
  2091. \end_inset
  2092. :
  2093. \begin_inset Formula
  2094. \[
  2095. T=\exp\xihat
  2096. \]
  2097. \end_inset
  2098. A closed form solution for the exponential map is given in
  2099. \begin_inset CommandInset citation
  2100. LatexCommand cite
  2101. after "page 42"
  2102. key "Murray94book"
  2103. \end_inset
  2104. .
  2105. \end_layout
  2106. \begin_layout Standard
  2107. \family roman
  2108. \series medium
  2109. \shape up
  2110. \size normal
  2111. \emph off
  2112. \bar no
  2113. \noun off
  2114. \color none
  2115. \begin_inset Formula
  2116. \[
  2117. \exp\left(\widehat{\left[\begin{array}{c}
  2118. \omega\\
  2119. v
  2120. \end{array}\right]}t\right)=\left[\begin{array}{cc}
  2121. e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\
  2122. 0 & 1
  2123. \end{array}\right]
  2124. \]
  2125. \end_inset
  2126. \end_layout
  2127. \begin_layout Subsection
  2128. The Adjoint Map
  2129. \end_layout
  2130. \begin_layout Standard
  2131. The adjoint is
  2132. \begin_inset Formula
  2133. \begin{eqnarray*}
  2134. \Ad T{\xihat} & = & T\xihat T^{-1}\\
  2135. & = & \left[\begin{array}{cc}
  2136. R & t\\
  2137. 0 & 1
  2138. \end{array}\right]\left[\begin{array}{cc}
  2139. \Skew{\omega} & v\\
  2140. 0 & 0
  2141. \end{array}\right]\left[\begin{array}{cc}
  2142. R^{T} & -R^{T}t\\
  2143. 0 & 1
  2144. \end{array}\right]\\
  2145. & = & \left[\begin{array}{cc}
  2146. \Skew{R\omega} & -\Skew{R\omega}t+Rv\\
  2147. 0 & 0
  2148. \end{array}\right]\\
  2149. & = & \left[\begin{array}{cc}
  2150. \Skew{R\omega} & t\times R\omega+Rv\\
  2151. 0 & 0
  2152. \end{array}\right]
  2153. \end{eqnarray*}
  2154. \end_inset
  2155. From this we can express the Adjoint map in terms of twist coordinates (see
  2156. also
  2157. \begin_inset CommandInset citation
  2158. LatexCommand cite
  2159. key "Murray94book"
  2160. \end_inset
  2161. and FP):
  2162. \begin_inset Formula
  2163. \[
  2164. \left[\begin{array}{c}
  2165. \omega'\\
  2166. v'
  2167. \end{array}\right]=\left[\begin{array}{cc}
  2168. R & 0\\
  2169. \Skew tR & R
  2170. \end{array}\right]\left[\begin{array}{c}
  2171. \omega\\
  2172. v
  2173. \end{array}\right]
  2174. \]
  2175. \end_inset
  2176. \end_layout
  2177. \begin_layout Subsection
  2178. Actions
  2179. \end_layout
  2180. \begin_layout Standard
  2181. The action of
  2182. \begin_inset Formula $\SEthree$
  2183. \end_inset
  2184. on 3D points is done by embedding the points in
  2185. \begin_inset Formula $\mathbb{R}^{4}$
  2186. \end_inset
  2187. by using homogeneous coordinates
  2188. \begin_inset Formula
  2189. \[
  2190. \hat{q}=\left[\begin{array}{c}
  2191. q\\
  2192. 1
  2193. \end{array}\right]=\left[\begin{array}{c}
  2194. Rp+t\\
  2195. 1
  2196. \end{array}\right]=\left[\begin{array}{cc}
  2197. R & t\\
  2198. 0 & 1
  2199. \end{array}\right]\left[\begin{array}{c}
  2200. p\\
  2201. 1
  2202. \end{array}\right]=T\hat{p}
  2203. \]
  2204. \end_inset
  2205. We would now like to know what an incremental pose parameterized by
  2206. \begin_inset Formula $\xi$
  2207. \end_inset
  2208. would do:
  2209. \begin_inset Formula
  2210. \[
  2211. \hat{q}(\xi)=Te^{\xihat}\hat{p}
  2212. \]
  2213. \end_inset
  2214. hence the derivative is
  2215. \begin_inset Formula
  2216. \[
  2217. \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)
  2218. \]
  2219. \end_inset
  2220. where
  2221. \begin_inset Formula $\xihat\hat{p}$
  2222. \end_inset
  2223. corresponds to a velocity in
  2224. \begin_inset Formula $\mathbb{R}^{4}$
  2225. \end_inset
  2226. (in the local
  2227. \begin_inset Formula $T$
  2228. \end_inset
  2229. frame):
  2230. \begin_inset Formula
  2231. \[
  2232. \xihat\hat{p}=\left[\begin{array}{cc}
  2233. \Skew{\omega} & v\\
  2234. 0 & 0
  2235. \end{array}\right]\left[\begin{array}{c}
  2236. p\\
  2237. 1
  2238. \end{array}\right]=\left[\begin{array}{c}
  2239. \omega\times p+v\\
  2240. 0
  2241. \end{array}\right]
  2242. \]
  2243. \end_inset
  2244. Notice how velocities are analogous to points at infinity in projective
  2245. geometry: they correspond to free vectors indicating a direction and magnitude
  2246. of change.
  2247. \end_layout
  2248. \begin_layout Standard
  2249. By only taking the top three rows, we can write this as a velocity in
  2250. \begin_inset Formula $\Rthree$
  2251. \end_inset
  2252. , as the product of a
  2253. \begin_inset Formula $3\times6$
  2254. \end_inset
  2255. matrix
  2256. \begin_inset Formula $H_{p}$
  2257. \end_inset
  2258. that acts upon the exponential coordinates
  2259. \begin_inset Formula $\xi$
  2260. \end_inset
  2261. directly:
  2262. \begin_inset Formula
  2263. \[
  2264. \omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
  2265. -\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
  2266. \omega\\
  2267. v
  2268. \end{array}\right]
  2269. \]
  2270. \end_inset
  2271. yielding the derivative
  2272. \begin_inset Formula
  2273. \[
  2274. \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=T\left[\begin{array}{cc}
  2275. -\Skew p & I_{3}\\
  2276. 0 & 0
  2277. \end{array}\right]
  2278. \]
  2279. \end_inset
  2280. The inverse action
  2281. \begin_inset Formula $T^{-1}p$
  2282. \end_inset
  2283. is
  2284. \begin_inset Formula
  2285. \[
  2286. \hat{q}=\left[\begin{array}{c}
  2287. q\\
  2288. 1
  2289. \end{array}\right]=\left[\begin{array}{c}
  2290. R^{T}(p-t)\\
  2291. 1
  2292. \end{array}\right]=\left[\begin{array}{cc}
  2293. R^{T} & -R^{T}t\\
  2294. 0 & 1
  2295. \end{array}\right]\left[\begin{array}{c}
  2296. p\\
  2297. 1
  2298. \end{array}\right]=T^{-1}\hat{p}
  2299. \]
  2300. \end_inset
  2301. \end_layout
  2302. \begin_layout Standard
  2303. \begin_inset Newpage pagebreak
  2304. \end_inset
  2305. \end_layout
  2306. \begin_layout Section
  2307. 3D Similarity Transformations
  2308. \end_layout
  2309. \begin_layout Standard
  2310. The group of 3D similarity transformations
  2311. \begin_inset Formula $Sim(3)$
  2312. \end_inset
  2313. is the set of
  2314. \begin_inset Formula $4\times4$
  2315. \end_inset
  2316. invertible matrices of the form
  2317. \begin_inset Formula
  2318. \[
  2319. T\define\left[\begin{array}{cc}
  2320. R & t\\
  2321. 0 & s^{-1}
  2322. \end{array}\right]
  2323. \]
  2324. \end_inset
  2325. where
  2326. \begin_inset Formula $s$
  2327. \end_inset
  2328. is a scalar.
  2329. There are several different conventions in use for the Lie algebra generators,
  2330. but we use
  2331. \begin_inset Formula
  2332. \[
  2333. G^{1}=\left(\begin{array}{cccc}
  2334. 0 & 0 & 0 & 0\\
  2335. 0 & 0 & -1 & 0\\
  2336. 0 & 1 & 0 & 0\\
  2337. 0 & 0 & 0 & 0
  2338. \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
  2339. 0 & 0 & 1 & 0\\
  2340. 0 & 0 & 0 & 0\\
  2341. -1 & 0 & 0 & 0\\
  2342. 0 & 0 & 0 & 0
  2343. \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
  2344. 0 & -1 & 0 & 0\\
  2345. 1 & 0 & 0 & 0\\
  2346. 0 & 0 & 0 & 0\\
  2347. 0 & 0 & 0 & 0
  2348. \end{array}\right)
  2349. \]
  2350. \end_inset
  2351. \begin_inset Formula
  2352. \[
  2353. G^{4}=\left(\begin{array}{cccc}
  2354. 0 & 0 & 0 & 1\\
  2355. 0 & 0 & 0 & 0\\
  2356. 0 & 0 & 0 & 0\\
  2357. 0 & 0 & 0 & 0
  2358. \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
  2359. 0 & 0 & 0 & 0\\
  2360. 0 & 0 & 0 & 1\\
  2361. 0 & 0 & 0 & 0\\
  2362. 0 & 0 & 0 & 0
  2363. \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
  2364. 0 & 0 & 0 & 0\\
  2365. 0 & 0 & 0 & 0\\
  2366. 0 & 0 & 0 & 1\\
  2367. 0 & 0 & 0 & 0
  2368. \end{array}\right)\mbox{ }G^{7}=\left(\begin{array}{cccc}
  2369. 0 & 0 & 0 & 0\\
  2370. 0 & 0 & 0 & 0\\
  2371. 0 & 0 & 0 & 0\\
  2372. 0 & 0 & 0 & -1
  2373. \end{array}\right)
  2374. \]
  2375. \end_inset
  2376. \end_layout
  2377. \begin_layout Subsection
  2378. Actions
  2379. \end_layout
  2380. \begin_layout Standard
  2381. The action of
  2382. \begin_inset Formula $\SEthree$
  2383. \end_inset
  2384. on 3D points is done by embedding the points in
  2385. \begin_inset Formula $\mathbb{R}^{4}$
  2386. \end_inset
  2387. by using homogeneous coordinates
  2388. \begin_inset Formula
  2389. \[
  2390. \hat{q}=\left[\begin{array}{c}
  2391. q\\
  2392. s^{-1}
  2393. \end{array}\right]=\left[\begin{array}{c}
  2394. Rp+t\\
  2395. s^{-1}
  2396. \end{array}\right]=\left[\begin{array}{cc}
  2397. R & t\\
  2398. 0 & s^{-1}
  2399. \end{array}\right]\left[\begin{array}{c}
  2400. p\\
  2401. 1
  2402. \end{array}\right]=T\hat{p}
  2403. \]
  2404. \end_inset
  2405. The derivative
  2406. \begin_inset Formula $D_{1}f(\xi)$
  2407. \end_inset
  2408. in an incremental change
  2409. \begin_inset Formula $\xi$
  2410. \end_inset
  2411. to
  2412. \begin_inset Formula $T$
  2413. \end_inset
  2414. is given by
  2415. \begin_inset Formula $TH(p)$
  2416. \end_inset
  2417. where
  2418. \begin_inset Formula
  2419. \[
  2420. H(p)=G_{jk}^{i}p^{j}=\left(\begin{array}{ccccccc}
  2421. 0 & z & -y & 1 & 0 & 0 & 0\\
  2422. -z & 0 & x & 0 & 1 & 0 & 0\\
  2423. y & -x & 0 & 0 & 0 & 1 & 0\\
  2424. 0 & 0 & 0 & 0 & 0 & 0 & -1
  2425. \end{array}\right)
  2426. \]
  2427. \end_inset
  2428. In other words
  2429. \begin_inset Formula
  2430. \[
  2431. D_{1}f(\xi)=\left[\begin{array}{cc}
  2432. R & t\\
  2433. 0 & s^{-1}
  2434. \end{array}\right]\left[\begin{array}{ccc}
  2435. -\left[p\right]_{x} & I_{3} & 0\\
  2436. 0 & 0 & -1
  2437. \end{array}\right]=\left[\begin{array}{ccc}
  2438. -R\left[p\right]_{x} & R & -t\\
  2439. 0 & 0 & -s^{-1}
  2440. \end{array}\right]
  2441. \]
  2442. \end_inset
  2443. This is the derivative for the action on homogeneous coordinates.
  2444. Switching back to non-homogeneous coordinates is done by
  2445. \begin_inset Formula
  2446. \[
  2447. \left[\begin{array}{c}
  2448. q\\
  2449. a
  2450. \end{array}\right]\rightarrow q/a
  2451. \]
  2452. \end_inset
  2453. with derivative
  2454. \begin_inset Formula
  2455. \[
  2456. \left[\begin{array}{cc}
  2457. a^{-1}I_{3} & -qa^{-2}\end{array}\right]
  2458. \]
  2459. \end_inset
  2460. For
  2461. \begin_inset Formula $a=s^{-1}$
  2462. \end_inset
  2463. we obtain
  2464. \begin_inset Formula
  2465. \[
  2466. D_{1}f(\xi)=\left[\begin{array}{cc}
  2467. sI_{3} & -qs^{2}\end{array}\right]\left[\begin{array}{ccc}
  2468. -R\left[p\right]_{x} & R & -t\\
  2469. 0 & 0 & -s^{-1}
  2470. \end{array}\right]=\left[\begin{array}{ccc}
  2471. -sR\left[p\right]_{x} & sR & -st+qs\end{array}\right]=\left[\begin{array}{ccc}
  2472. -sR\left[p\right]_{x} & sR & sRp\end{array}\right]
  2473. \]
  2474. \end_inset
  2475. \end_layout
  2476. \begin_layout Standard
  2477. \begin_inset Newpage pagebreak
  2478. \end_inset
  2479. \end_layout
  2480. \begin_layout Section
  2481. 2D Affine Transformations
  2482. \end_layout
  2483. \begin_layout Standard
  2484. The Lie group
  2485. \begin_inset Formula $Aff(2)$
  2486. \end_inset
  2487. is a subgroup of the general linear group
  2488. \begin_inset Formula $GL(3)$
  2489. \end_inset
  2490. of
  2491. \begin_inset Formula $3\times3$
  2492. \end_inset
  2493. invertible matrices that maps the line infinity to itself, and hence preserves
  2494. paralellism.
  2495. The affine transformation matrices
  2496. \begin_inset Formula $A$
  2497. \end_inset
  2498. can be written as
  2499. \begin_inset CommandInset citation
  2500. LatexCommand cite
  2501. key "Mei08tro"
  2502. \end_inset
  2503. \family roman
  2504. \series medium
  2505. \shape up
  2506. \size normal
  2507. \emph off
  2508. \bar no
  2509. \noun off
  2510. \color none
  2511. \begin_inset Formula
  2512. \[
  2513. \left[\begin{array}{ccc}
  2514. m_{11} & m_{12} & t_{1}\\
  2515. m_{21} & m_{22} & t_{2}\\
  2516. 0 & 0 & k
  2517. \end{array}\right]
  2518. \]
  2519. \end_inset
  2520. with
  2521. \begin_inset Formula $M\in GL(2)$
  2522. \end_inset
  2523. ,
  2524. \begin_inset Formula $t\in\Rtwo$
  2525. \end_inset
  2526. , and
  2527. \begin_inset Formula $k$
  2528. \end_inset
  2529. a scalar chosen such that
  2530. \begin_inset Formula $det(A)=1$
  2531. \end_inset
  2532. .
  2533. \family default
  2534. \series default
  2535. \shape default
  2536. \size default
  2537. \emph default
  2538. \bar default
  2539. \noun default
  2540. \color inherit
  2541. Note that just as
  2542. \begin_inset Formula $\SEtwo$
  2543. \end_inset
  2544. is a semi-direct product, so too is
  2545. \begin_inset Formula $Aff(2)=\Rtwo\rtimes GL(2)$
  2546. \end_inset
  2547. .
  2548. In particular, any affine transformation
  2549. \begin_inset Formula $A$
  2550. \end_inset
  2551. can be written as
  2552. \begin_inset Formula
  2553. \[
  2554. A=\left[\begin{array}{cc}
  2555. 0 & t\\
  2556. 0 & 1
  2557. \end{array}\right]\left[\begin{array}{cc}
  2558. M & 0\\
  2559. 0 & k
  2560. \end{array}\right]
  2561. \]
  2562. \end_inset
  2563. and they compose as
  2564. \begin_inset Formula
  2565. \[
  2566. A_{1}A_{2}=\left[\begin{array}{cc}
  2567. M_{1} & t_{1}\\
  2568. 0 & k_{1}
  2569. \end{array}\right]\left[\begin{array}{cc}
  2570. M_{2} & t_{2}\\
  2571. 0 & k_{2}
  2572. \end{array}\right]=\left[\begin{array}{cc}
  2573. M_{1}M_{2} & M_{2}t_{2}+k_{2}t_{1}\\
  2574. 0 & k_{1}k_{2}
  2575. \end{array}\right]
  2576. \]
  2577. \end_inset
  2578. From this it can be gleaned that the groups
  2579. \begin_inset Formula $\SOtwo$
  2580. \end_inset
  2581. and
  2582. \begin_inset Formula $\SEtwo$
  2583. \end_inset
  2584. are both subgroups, with
  2585. \begin_inset Formula $\SOtwo\subset\SEtwo\subset\Afftwo$
  2586. \end_inset
  2587. .
  2588. \family roman
  2589. \series medium
  2590. \shape up
  2591. \size normal
  2592. \emph off
  2593. \bar no
  2594. \noun off
  2595. \color none
  2596. By choosing the generators carefully we maintain this hierarchy among the
  2597. associated Lie algebras.
  2598. In particular,
  2599. \begin_inset Formula $\setwo$
  2600. \end_inset
  2601. \begin_inset Formula
  2602. \[
  2603. G^{1}=\left[\begin{array}{ccc}
  2604. 0 & 0 & 1\\
  2605. 0 & 0 & 0\\
  2606. 0 & 0 & 0
  2607. \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
  2608. 0 & 0 & 0\\
  2609. 0 & 0 & 1\\
  2610. 0 & 0 & 0
  2611. \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
  2612. 0 & -1 & 0\\
  2613. 1 & 0 & 0\\
  2614. 0 & 0 & 0
  2615. \end{array}\right]
  2616. \]
  2617. \end_inset
  2618. can be extended to the
  2619. \family default
  2620. \series default
  2621. \shape default
  2622. \size default
  2623. \emph default
  2624. \bar default
  2625. \noun default
  2626. \color inherit
  2627. Lie algebra
  2628. \family roman
  2629. \series medium
  2630. \shape up
  2631. \size normal
  2632. \emph off
  2633. \bar no
  2634. \noun off
  2635. \color none
  2636. \begin_inset Formula $\afftwo$
  2637. \end_inset
  2638. using the three additional generators
  2639. \begin_inset Formula
  2640. \[
  2641. G^{4}=\left[\begin{array}{ccc}
  2642. 0 & 1 & 0\\
  2643. 1 & 0 & 0\\
  2644. 0 & 0 & 0
  2645. \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
  2646. 1 & 0 & 0\\
  2647. 0 & -1 & 0\\
  2648. 0 & 0 & 0
  2649. \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
  2650. 0 & 0 & 0\\
  2651. 0 & -1 & 0\\
  2652. 0 & 0 & 1
  2653. \end{array}\right]
  2654. \]
  2655. \end_inset
  2656. \family default
  2657. \series default
  2658. \shape default
  2659. \size default
  2660. \emph default
  2661. \bar default
  2662. \noun default
  2663. \color inherit
  2664. Hence, the Lie algebra
  2665. \begin_inset Formula $\afftwo$
  2666. \end_inset
  2667. is the vector space of
  2668. \begin_inset Formula $3\times3$
  2669. \end_inset
  2670. incremental affine transformations
  2671. \begin_inset Formula $\ahat$
  2672. \end_inset
  2673. parameterized by 6 parameters
  2674. \begin_inset Formula $\aa\in\mathbb{R}^{6}$
  2675. \end_inset
  2676. , with the mapping
  2677. \begin_inset Formula
  2678. \[
  2679. \aa\rightarrow\ahat\define\left[\begin{array}{ccc}
  2680. a_{5} & a_{4}-a_{3} & a_{1}\\
  2681. a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\
  2682. 0 & 0 & a_{6}
  2683. \end{array}\right]
  2684. \]
  2685. \end_inset
  2686. Note that
  2687. \begin_inset Formula $G_{5}$
  2688. \end_inset
  2689. and
  2690. \begin_inset Formula $G_{6}$
  2691. \end_inset
  2692. change the relative scale of
  2693. \begin_inset Formula $x$
  2694. \end_inset
  2695. and
  2696. \begin_inset Formula $y$
  2697. \end_inset
  2698. but without changing the determinant:
  2699. \begin_inset Formula
  2700. \[
  2701. e^{xG_{5}}=\exp\left[\begin{array}{ccc}
  2702. x & 0 & 0\\
  2703. 0 & -x & 0\\
  2704. 0 & 0 & 0
  2705. \end{array}\right]=\left[\begin{array}{ccc}
  2706. e^{x} & 0 & 0\\
  2707. 0 & 1/e^{x} & 0\\
  2708. 0 & 0 & 1
  2709. \end{array}\right]
  2710. \]
  2711. \end_inset
  2712. \begin_inset Formula
  2713. \[
  2714. e^{xG_{6}}=\exp\left[\begin{array}{ccc}
  2715. 0 & 0 & 0\\
  2716. 0 & -x & 0\\
  2717. 0 & 0 & x
  2718. \end{array}\right]=\left[\begin{array}{ccc}
  2719. 1 & 0 & 0\\
  2720. 0 & 1/e^{x} & 0\\
  2721. 0 & 0 & e^{x}
  2722. \end{array}\right]
  2723. \]
  2724. \end_inset
  2725. It might be nicer to have the correspondence with scaling
  2726. \begin_inset Formula $x$
  2727. \end_inset
  2728. and
  2729. \begin_inset Formula $y$
  2730. \end_inset
  2731. more direct, by choosing
  2732. \family roman
  2733. \series medium
  2734. \shape up
  2735. \size normal
  2736. \emph off
  2737. \bar no
  2738. \noun off
  2739. \color none
  2740. \begin_inset Formula
  2741. \[
  2742. \mbox{ }G^{5}=\left[\begin{array}{ccc}
  2743. 1 & 0 & 0\\
  2744. 0 & 0 & 0\\
  2745. 0 & 0 & -1
  2746. \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
  2747. 0 & 0 & 0\\
  2748. 0 & 1 & 0\\
  2749. 0 & 0 & -1
  2750. \end{array}\right]
  2751. \]
  2752. \end_inset
  2753. and hence
  2754. \family default
  2755. \series default
  2756. \shape default
  2757. \size default
  2758. \emph default
  2759. \bar default
  2760. \noun default
  2761. \color inherit
  2762. \begin_inset Formula
  2763. \[
  2764. e^{xG_{5}}=\exp\left[\begin{array}{ccc}
  2765. x & 0 & 0\\
  2766. 0 & 0 & 0\\
  2767. 0 & 0 & -x
  2768. \end{array}\right]=\left[\begin{array}{ccc}
  2769. e^{x} & 0 & 0\\
  2770. 0 & 1 & 0\\
  2771. 0 & 0 & 1/e^{x}
  2772. \end{array}\right]
  2773. \]
  2774. \end_inset
  2775. \begin_inset Formula
  2776. \[
  2777. e^{xG_{6}}=\exp\left[\begin{array}{ccc}
  2778. 0 & 0 & 0\\
  2779. 0 & x & 0\\
  2780. 0 & 0 & -x
  2781. \end{array}\right]=\left[\begin{array}{ccc}
  2782. 1 & 0 & 0\\
  2783. 0 & e^{x} & 0\\
  2784. 0 & 0 & 1/e^{x}
  2785. \end{array}\right]
  2786. \]
  2787. \end_inset
  2788. \end_layout
  2789. \begin_layout Section
  2790. 2D Homographies
  2791. \end_layout
  2792. \begin_layout Standard
  2793. When viewed as operations on images, represented by 2D projective space
  2794. \begin_inset Formula $\mathcal{P}^{3}$
  2795. \end_inset
  2796. , 3D rotations are a special case of 2D homographies.
  2797. These are now treated, loosely based on the exposition in
  2798. \begin_inset CommandInset citation
  2799. LatexCommand cite
  2800. key "Mei06iros,Mei08tro"
  2801. \end_inset
  2802. .
  2803. \end_layout
  2804. \begin_layout Subsection
  2805. Basics
  2806. \end_layout
  2807. \begin_layout Standard
  2808. The Lie group
  2809. \begin_inset Formula $\SLthree$
  2810. \end_inset
  2811. is a subgroup of the general linear group
  2812. \begin_inset Formula $GL(3)$
  2813. \end_inset
  2814. of
  2815. \begin_inset Formula $3\times3$
  2816. \end_inset
  2817. invertible matrices with determinant
  2818. \begin_inset Formula $1$
  2819. \end_inset
  2820. .
  2821. The homographies generalize transformations of the 2D projective space,
  2822. and
  2823. \begin_inset Formula $\Afftwo\subset\SLthree$
  2824. \end_inset
  2825. .
  2826. \end_layout
  2827. \begin_layout Standard
  2828. \family roman
  2829. \series medium
  2830. \shape up
  2831. \size normal
  2832. \emph off
  2833. \bar no
  2834. \noun off
  2835. \color none
  2836. We can extend
  2837. \begin_inset Formula $\afftwo$
  2838. \end_inset
  2839. to the Lie algebra
  2840. \begin_inset Formula $\slthree$
  2841. \end_inset
  2842. by adding two generators
  2843. \begin_inset Formula
  2844. \[
  2845. G^{7}=\left[\begin{array}{ccc}
  2846. 0 & 0 & 0\\
  2847. 0 & 0 & 0\\
  2848. 1 & 0 & 0
  2849. \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
  2850. 0 & 0 & 0\\
  2851. 0 & 0 & 0\\
  2852. 0 & 1 & 0
  2853. \end{array}\right]
  2854. \]
  2855. \end_inset
  2856. \family default
  2857. \series default
  2858. \shape default
  2859. \size default
  2860. \emph default
  2861. \bar default
  2862. \noun default
  2863. \color inherit
  2864. obtaining the vector space of
  2865. \begin_inset Formula $3\times3$
  2866. \end_inset
  2867. incremental homographies
  2868. \begin_inset Formula $\hhat$
  2869. \end_inset
  2870. parameterized by 8 parameters
  2871. \begin_inset Formula $\hh\in\mathbb{R}^{8}$
  2872. \end_inset
  2873. , with the mapping
  2874. \begin_inset Formula
  2875. \[
  2876. h\rightarrow\hhat\define\left[\begin{array}{ccc}
  2877. h_{5} & h_{4}-h_{3} & h_{1}\\
  2878. h_{4}+h_{3} & -h_{5}-h_{6} & h_{2}\\
  2879. h_{7} & h_{8} & h_{6}
  2880. \end{array}\right]
  2881. \]
  2882. \end_inset
  2883. \end_layout
  2884. \begin_layout Subsection
  2885. Tensor Notation
  2886. \end_layout
  2887. \begin_layout Itemize
  2888. A homography between 2D projective spaces
  2889. \begin_inset Formula $A$
  2890. \end_inset
  2891. and
  2892. \begin_inset Formula $B$
  2893. \end_inset
  2894. can be written in tensor notation
  2895. \begin_inset Formula $H_{A}^{B}$
  2896. \end_inset
  2897. \end_layout
  2898. \begin_layout Itemize
  2899. Applying a homography is then a tensor contraction
  2900. \begin_inset Formula $x^{B}=H_{A}^{B}x^{A}$
  2901. \end_inset
  2902. , mapping points in
  2903. \begin_inset Formula $A$
  2904. \end_inset
  2905. to points in
  2906. \begin_inset Formula $B$
  2907. \end_inset
  2908. .
  2909. \end_layout
  2910. \begin_layout Standard
  2911. \begin_inset Note Note
  2912. status collapsed
  2913. \begin_layout Plain Layout
  2914. The inverse of a homography can be found by contracting with two permutation
  2915. tensors:
  2916. \begin_inset Formula
  2917. \[
  2918. H_{B}^{A}=H_{A_{1}}^{B_{1}}H_{A_{2}}^{B_{2}}\epsilon_{B_{1}B_{2}B}\epsilon^{A_{1}A_{2}A}
  2919. \]
  2920. \end_inset
  2921. \end_layout
  2922. \end_inset
  2923. \begin_inset Note Note
  2924. status collapsed
  2925. \begin_layout Subsection
  2926. The Adjoint Map
  2927. \end_layout
  2928. \begin_layout Plain Layout
  2929. The adjoint can be done using tensor notation.
  2930. Denoting an incremental homography in space
  2931. \begin_inset Formula $A$
  2932. \end_inset
  2933. as
  2934. \begin_inset Formula $\hhat_{A_{1}}^{A_{2}}$
  2935. \end_inset
  2936. , we have, for example for
  2937. \begin_inset Formula $G_{1}$
  2938. \end_inset
  2939. \begin_inset Formula
  2940. \begin{eqnarray*}
  2941. \hhat_{B_{1}}^{B_{2}}=\Ad{H_{A}^{B}}{\hhat_{A_{1}}^{A_{2}}} & = & H_{A_{2}}^{B_{2}}\hhat_{A_{1}}^{A_{2}}H_{B_{1}}^{A_{1}}\\
  2942. & = & H_{A_{2}}^{B_{2}}\left[\begin{array}{ccc}
  2943. 0 & 0 & 1\\
  2944. 0 & 0 & 0\\
  2945. 0 & 0 & 0
  2946. \end{array}\right]H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{A_{1}A_{2}A_{3}}\\
  2947. & = & H_{1}^{B_{2}}H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{3A_{2}A_{3}}
  2948. \end{eqnarray*}
  2949. \end_inset
  2950. This does not seem to help.
  2951. \end_layout
  2952. \end_inset
  2953. \end_layout
  2954. \begin_layout Standard
  2955. \begin_inset Newpage pagebreak
  2956. \end_inset
  2957. \end_layout
  2958. \begin_layout Section*
  2959. Appendix: Proof of Property
  2960. \begin_inset CommandInset ref
  2961. LatexCommand ref
  2962. reference "proof1"
  2963. \end_inset
  2964. \end_layout
  2965. \begin_layout Standard
  2966. We can prove the following identity for rotation matrices
  2967. \begin_inset Formula $R$
  2968. \end_inset
  2969. ,
  2970. \begin_inset Formula
  2971. \begin{eqnarray}
  2972. R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc}
  2973. a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\
  2974. & = & R\left[\begin{array}{ccc}
  2975. \omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\
  2976. & = & \left[\begin{array}{ccc}
  2977. a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\
  2978. a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\
  2979. a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})
  2980. \end{array}\right]\nonumber \\
  2981. & = & \left[\begin{array}{ccc}
  2982. \omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\
  2983. \omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\
  2984. \omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})
  2985. \end{array}\right]\nonumber \\
  2986. & = & \left[\begin{array}{ccc}
  2987. 0 & -\omega a_{3} & \omega a_{2}\\
  2988. \omega a_{3} & 0 & -\omega a_{1}\\
  2989. -\omega a_{2} & \omega a_{1} & 0
  2990. \end{array}\right]\nonumber \\
  2991. & = & \Skew{R\omega}\label{proof1}
  2992. \end{eqnarray}
  2993. \end_inset
  2994. where
  2995. \begin_inset Formula $a_{1}$
  2996. \end_inset
  2997. ,
  2998. \begin_inset Formula $a_{2}$
  2999. \end_inset
  3000. , and
  3001. \begin_inset Formula $a_{3}$
  3002. \end_inset
  3003. are the
  3004. \emph on
  3005. rows
  3006. \emph default
  3007. of
  3008. \begin_inset Formula $R$
  3009. \end_inset
  3010. .
  3011. Above we made use of the orthogonality of rotation matrices and the triple
  3012. product rule:
  3013. \begin_inset Formula
  3014. \[
  3015. a(b\times c)=b(c\times a)=c(a\times b)
  3016. \]
  3017. \end_inset
  3018. Similarly, without proof
  3019. \begin_inset CommandInset citation
  3020. LatexCommand cite
  3021. after "Lemma 2.3"
  3022. key "Murray94book"
  3023. \end_inset
  3024. :
  3025. \begin_inset Formula
  3026. \[
  3027. R(a\times b)=Ra\times Rb
  3028. \]
  3029. \end_inset
  3030. \end_layout
  3031. \begin_layout Section*
  3032. Appendix: Alternative Generators for
  3033. \begin_inset Formula $\slthree$
  3034. \end_inset
  3035. \end_layout
  3036. \begin_layout Standard
  3037. \begin_inset CommandInset citation
  3038. LatexCommand cite
  3039. key "Mei06iros"
  3040. \end_inset
  3041. uses the following generators for
  3042. \begin_inset Formula $\slthree$
  3043. \end_inset
  3044. :
  3045. \family roman
  3046. \series medium
  3047. \shape up
  3048. \size normal
  3049. \emph off
  3050. \bar no
  3051. \noun off
  3052. \color none
  3053. \begin_inset Formula
  3054. \[
  3055. G^{1}=\left[\begin{array}{ccc}
  3056. 0 & 0 & 1\\
  3057. 0 & 0 & 0\\
  3058. 0 & 0 & 0
  3059. \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
  3060. 0 & 0 & 0\\
  3061. 0 & 0 & 1\\
  3062. 0 & 0 & 0
  3063. \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
  3064. 0 & 1 & 0\\
  3065. 0 & 0 & 0\\
  3066. 0 & 0 & 0
  3067. \end{array}\right]
  3068. \]
  3069. \end_inset
  3070. \begin_inset Formula
  3071. \[
  3072. G^{4}=\left[\begin{array}{ccc}
  3073. 0 & 0 & 0\\
  3074. 1 & 0 & 0\\
  3075. 0 & 0 & 0
  3076. \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
  3077. 1 & 0 & 0\\
  3078. 0 & -1 & 0\\
  3079. 0 & 0 & 0
  3080. \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
  3081. 0 & 0 & 0\\
  3082. 0 & -1 & 0\\
  3083. 0 & 0 & 1
  3084. \end{array}\right]
  3085. \]
  3086. \end_inset
  3087. \begin_inset Formula
  3088. \[
  3089. G^{7}=\left[\begin{array}{ccc}
  3090. 0 & 0 & 0\\
  3091. 0 & 0 & 0\\
  3092. 1 & 0 & 0
  3093. \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
  3094. 0 & 0 & 0\\
  3095. 0 & 0 & 0\\
  3096. 0 & 1 & 0
  3097. \end{array}\right]
  3098. \]
  3099. \end_inset
  3100. \family default
  3101. \series default
  3102. \shape default
  3103. \size default
  3104. \emph default
  3105. \bar default
  3106. \noun default
  3107. \color inherit
  3108. We choose to use a different linear combination as the basis.
  3109. \end_layout
  3110. \begin_layout Standard
  3111. \begin_inset CommandInset bibtex
  3112. LatexCommand bibtex
  3113. bibfiles "../../../papers/refs"
  3114. options "plain"
  3115. \end_inset
  3116. \end_layout
  3117. \end_body
  3118. \end_document