12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971 |
- #LyX 2.1 created this file. For more info see http://www.lyx.org/
- \lyxformat 474
- \begin_document
- \begin_header
- \textclass article
- \use_default_options false
- \begin_modules
- theorems-std
- \end_modules
- \maintain_unincluded_children false
- \language english
- \language_package default
- \inputencoding auto
- \fontencoding global
- \font_roman times
- \font_sans default
- \font_typewriter default
- \font_math auto
- \font_default_family rmdefault
- \use_non_tex_fonts false
- \font_sc false
- \font_osf false
- \font_sf_scale 100
- \font_tt_scale 100
- \graphics default
- \default_output_format default
- \output_sync 0
- \bibtex_command default
- \index_command default
- \paperfontsize 12
- \spacing single
- \use_hyperref false
- \papersize default
- \use_geometry true
- \use_package amsmath 1
- \use_package amssymb 1
- \use_package cancel 1
- \use_package esint 0
- \use_package mathdots 1
- \use_package mathtools 1
- \use_package mhchem 1
- \use_package stackrel 1
- \use_package stmaryrd 1
- \use_package undertilde 1
- \cite_engine basic
- \cite_engine_type default
- \biblio_style plain
- \use_bibtopic false
- \use_indices false
- \paperorientation portrait
- \suppress_date false
- \justification true
- \use_refstyle 0
- \index Index
- \shortcut idx
- \color #008000
- \end_index
- \leftmargin 1in
- \topmargin 1in
- \rightmargin 1in
- \bottommargin 1in
- \secnumdepth 3
- \tocdepth 3
- \paragraph_separation indent
- \paragraph_indentation default
- \quotes_language english
- \papercolumns 1
- \papersides 1
- \paperpagestyle default
- \tracking_changes false
- \output_changes false
- \html_math_output 0
- \html_css_as_file 0
- \html_be_strict false
- \end_header
- \begin_body
- \begin_layout Title
- Lie Groups for Beginners
- \end_layout
- \begin_layout Author
- Frank Dellaert
- \end_layout
- \begin_layout Standard
- \begin_inset CommandInset include
- LatexCommand include
- filename "macros.lyx"
- \end_inset
- \end_layout
- \begin_layout Section
- Motivation: Rigid Motions in the Plane
- \end_layout
- \begin_layout Standard
- We will start with a small example of a robot moving in a plane, parameterized
- by a
- \emph on
- 2D pose
- \emph default
-
- \begin_inset Formula $(x,\,y,\,\theta)$
- \end_inset
- .
- When we give it a small forward velocity
- \begin_inset Formula $v_{x}$
- \end_inset
- , we know that the location changes as
- \begin_inset Formula
- \[
- \dot{x}=v_{x}
- \]
- \end_inset
- The solution to this trivial differential equation is, with
- \begin_inset Formula $x_{0}$
- \end_inset
- the initial
- \begin_inset Formula $x$
- \end_inset
- -position of the robot,
- \begin_inset Formula
- \[
- x_{t}=x_{0}+v_{x}t
- \]
- \end_inset
- A similar story holds for translation in the
- \begin_inset Formula $y$
- \end_inset
- direction, and in fact for translations in general:
- \begin_inset Formula
- \[
- (x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0})
- \]
- \end_inset
- Similarly for rotation we have
- \begin_inset Formula
- \[
- (x_{t},\,y_{t},\,\theta_{t})=(x_{0},\,y_{0},\,\theta_{0}+\omega t)
- \]
- \end_inset
- where
- \begin_inset Formula $\omega$
- \end_inset
- is angular velocity, measured in
- \begin_inset Formula $rad/s$
- \end_inset
- in counterclockwise direction.
-
- \end_layout
- \begin_layout Standard
- \begin_inset Float figure
- placement h
- wide false
- sideways false
- status collapsed
- \begin_layout Plain Layout
- \align center
- \begin_inset Graphics
- filename images/circular.pdf
- \end_inset
- \begin_inset Caption Standard
- \begin_layout Plain Layout
- Robot moving along a circular trajectory.
- \end_layout
- \end_inset
- \end_layout
- \end_inset
- \end_layout
- \begin_layout Standard
- However, if we combine translation and rotation, the story breaks down!
- We cannot write
- \begin_inset Formula
- \[
- (x_{t},\,y_{t},\,\theta_{t})=(x_{0}+v_{x}t,\,y_{0}+v_{y}t,\,\theta_{0}+\omega t)
- \]
- \end_inset
- The reason is that, if we move the robot a tiny bit according to the velocity
- vector
- \begin_inset Formula $(v_{x},\,v_{y},\,\omega)$
- \end_inset
- , we have (to first order)
- \begin_inset Formula
- \[
- (x_{\delta},\,y_{\delta},\,\theta_{\delta})=(x_{0}+v_{x}\delta,\,y_{0}+v_{y}\delta,\,\theta_{0}+\omega\delta)
- \]
- \end_inset
- but now the robot has rotated, and for the next incremental change, the
- velocity vector would have to be rotated before it can be applied.
- In fact, the robot will move on a
- \emph on
- circular
- \emph default
- trajectory.
-
- \end_layout
- \begin_layout Standard
- The reason is that
- \emph on
- translation and rotation do not commute
- \emph default
- : if we rotate and then move we will end up in a different place than if
- we moved first, then rotated.
- In fact, someone once said (I forget who, kudos for who can track down
- the exact quote):
- \end_layout
- \begin_layout Quote
- If rotation and translation commuted, we could do all rotations before leaving
- home.
- \end_layout
- \begin_layout Standard
- \begin_inset Float figure
- placement h
- wide false
- sideways false
- status open
- \begin_layout Plain Layout
- \align center
- \begin_inset Graphics
- filename images/n-steps.pdf
- \end_inset
- \begin_inset Caption Standard
- \begin_layout Plain Layout
- \begin_inset CommandInset label
- LatexCommand label
- name "fig:n-step-program"
- \end_inset
- Approximating a circular trajectory with
- \begin_inset Formula $n$
- \end_inset
- steps.
- \end_layout
- \end_inset
- \end_layout
- \end_inset
- To make progress, we have to be more precise about how the robot behaves.
- Specifically, let us define composition of two poses
- \begin_inset Formula $T_{1}$
- \end_inset
- and
- \begin_inset Formula $T_{2}$
- \end_inset
- as
- \begin_inset Formula
- \[
- T_{1}T_{2}=(x_{1},\,y_{1},\,\theta_{1})(x_{2},\,y_{2},\,\theta_{2})=(x_{1}+\cos\theta_{1}x_{2}-\sin\theta y_{2},\,y_{1}+\sin\theta_{1}x_{2}+\cos\theta_{1}y_{2},\,\theta_{1}+\theta_{2})
- \]
- \end_inset
- This is a bit clumsy, so we resort to a trick: embed the 2D poses in the
- space of
- \begin_inset Formula $3\times3$
- \end_inset
- matrices, so we can define composition as matrix multiplication:
- \begin_inset Formula
- \[
- T_{1}T_{2}=\left[\begin{array}{cc}
- R_{1} & t_{1}\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{cc}
- R_{2} & t_{2}\\
- 0 & 1
- \end{array}\right]=\left[\begin{array}{cc}
- R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
- 0 & 1
- \end{array}\right]
- \]
- \end_inset
- where the matrices
- \begin_inset Formula $R$
- \end_inset
- are 2D rotation matrices defined as
- \begin_inset Formula
- \[
- R=\left[\begin{array}{cc}
- \cos\theta & -\sin\theta\\
- \sin\theta & \cos\theta
- \end{array}\right]
- \]
- \end_inset
- Now a
- \begin_inset Quotes eld
- \end_inset
- tiny
- \begin_inset Quotes erd
- \end_inset
- motion of the robot can be written as
- \begin_inset Formula
- \[
- T(\delta)=\left[\begin{array}{ccc}
- \cos\omega\delta & -\sin\omega\delta & v_{x}\delta\\
- \sin\omega\delta & \cos\omega\delta & v_{y}\delta\\
- 0 & 0 & 1
- \end{array}\right]\approx\left[\begin{array}{ccc}
- 1 & -\omega\delta & v_{x}\delta\\
- \omega\delta & 1 & v_{y}\delta\\
- 0 & 0 & 1
- \end{array}\right]=I+\delta\left[\begin{array}{ccc}
- 0 & -\omega & v_{x}\\
- \omega & 0 & v_{y}\\
- 0 & 0 & 0
- \end{array}\right]
- \]
- \end_inset
- Let us define the
- \emph on
- 2D twist
- \emph default
- vector
- \begin_inset Formula $\xi=(v,\omega)$
- \end_inset
- , and the matrix above as
- \begin_inset Formula
- \[
- \xihat\define\left[\begin{array}{ccc}
- 0 & -\omega & v_{x}\\
- \omega & 0 & v_{y}\\
- 0 & 0 & 0
- \end{array}\right]
- \]
- \end_inset
- If we wanted
- \begin_inset Formula $t$
- \end_inset
- to be large, we could split up
- \begin_inset Formula $t$
- \end_inset
- into smaller timesteps, say
- \begin_inset Formula $n$
- \end_inset
- of them, and compose them as follows:
- \begin_inset Formula
- \[
- T(t)\approx\left(I+\frac{t}{n}\xihat\right)\ldots\mbox{n times}\ldots\left(I+\frac{t}{n}\xihat\right)=\left(I+\frac{t}{n}\xihat\right)^{n}
- \]
- \end_inset
- The result is shown in Figure
- \begin_inset CommandInset ref
- LatexCommand ref
- reference "fig:n-step-program"
- \end_inset
- .
- \end_layout
- \begin_layout Standard
- Of course, the perfect solution would be obtained if we take
- \begin_inset Formula $n$
- \end_inset
- to infinity:
- \begin_inset Formula
- \[
- T(t)=\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}
- \]
- \end_inset
- For real numbers, this series is familiar and is actually a way to compute
- the exponential function:
- \begin_inset Formula
- \[
- e^{x}=\lim_{n\rightarrow\infty}\left(1+\frac{x}{n}\right)^{n}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}
- \]
- \end_inset
- The series can be similarly defined for square matrices, and the final result
- is that we can write the motion of a robot along a circular trajectory,
- resulting from the 2D twist
- \begin_inset Formula $\xi=(v,\omega)$
- \end_inset
- \begin_inset Formula $ $
- \end_inset
- as the
- \emph on
- matrix exponential
- \emph default
- of
- \begin_inset Formula $\xihat$
- \end_inset
- :
- \begin_inset Formula
- \[
- T(t)=e^{t\xihat}\define\lim_{n\rightarrow\infty}\left(I+\frac{t}{n}\xihat\right)^{n}=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}\xihat^{k}
- \]
- \end_inset
- We call this mapping from 2D twists matrices
- \begin_inset Formula $\xihat$
- \end_inset
- to 2D rigid transformations the
- \emph on
- exponential map.
- \end_layout
- \begin_layout Standard
- The above has all elements of Lie group theory.
- We call the space of 2D rigid transformations, along with the composition
- operation, the
- \emph on
- special Euclidean group
- \emph default
-
- \begin_inset Formula $\SEtwo$
- \end_inset
- .
- It is called a Lie group because it is simultaneously a topological group
- and a manifold, which implies that the multiplication and the inversion
- operations are smooth.
- The space of 2D twists, together with a special binary operation to be
- defined below, is called the Lie algebra
- \begin_inset Formula $\setwo$
- \end_inset
- associated with
- \begin_inset Formula $\SEtwo$
- \end_inset
- .
-
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- Basic Lie Group Concepts
- \end_layout
- \begin_layout Standard
- We now define the concepts illustrated above, introduce some notation, and
- see what we can say in general.
- After this we then introduce the most commonly used Lie groups and their
- Lie algebras.
- \end_layout
- \begin_layout Subsection
- A Manifold and a Group
- \end_layout
- \begin_layout Standard
- A
- \series bold
- Lie group
- \series default
-
- \begin_inset Formula $G$
- \end_inset
- is both a group
- \emph on
- and
- \emph default
- a manifold that possesses a smooth group operation.
- Associated with it is a
- \series bold
- Lie Algebra
- \series default
-
- \begin_inset Formula $\gg$
- \end_inset
- which, loosely speaking, can be identified with the tangent space at the
- identity and completely defines how the groups behaves around the identity.
- There is a mapping from
- \begin_inset Formula $\gg$
- \end_inset
- back to
- \begin_inset Formula $G$
- \end_inset
- , called the
- \series bold
- exponential map
- \series default
- \begin_inset Formula
- \[
- \exp:\gg\rightarrow G
- \]
- \end_inset
- which is typically a many-to-one mapping.
- The corresponding inverse can be define locally around the origin and hence
- is a
- \begin_inset Quotes eld
- \end_inset
- logarithm
- \begin_inset Quotes erd
- \end_inset
-
- \begin_inset Formula
- \[
- \log:G\rightarrow\gg
- \]
- \end_inset
- that maps elements in a neighborhood of
- \begin_inset Formula $id$
- \end_inset
- in G to an element in
- \begin_inset Formula $\gg$
- \end_inset
- .
- \end_layout
- \begin_layout Standard
- An important family of Lie groups are the matrix Lie groups, whose elements
- are
- \begin_inset Formula $n\times n$
- \end_inset
- invertible matrices.
- The set of all such matrices, together with the matrix multiplication,
- is called the general linear group
- \begin_inset Formula $GL(n)$
- \end_inset
- of dimension
- \begin_inset Formula $n$
- \end_inset
- , and any closed subgroup of it is a
- \series bold
- matrix Lie group
- \series default
- .
- Most if not all Lie groups we are interested in will be matrix Lie groups.
- \end_layout
- \begin_layout Subsection
- Lie Algebra
- \end_layout
- \begin_layout Standard
- The Lie Algebra
- \begin_inset Formula $\gg$
- \end_inset
- is called an algebra because it is endowed with a binary operation, the
-
- \series bold
- Lie bracket
- \series default
-
- \begin_inset Formula $[X,Y]$
- \end_inset
- , the properties of which are closely related to the group operation of
-
- \begin_inset Formula $G$
- \end_inset
- .
- For example, for algebras associated with matrix Lie groups, the Lie bracket
- is given by
- \begin_inset Formula $[A,B]\define AB-BA$
- \end_inset
- .
- \end_layout
- \begin_layout Standard
- The relationship of the Lie bracket to the group operation is as follows:
- for commutative Lie groups vector addition
- \begin_inset Formula $X+Y$
- \end_inset
- in
- \begin_inset Formula $\gg$
- \end_inset
- mimicks the group operation.
- For example, if we have
- \begin_inset Formula $Z=X+Y$
- \end_inset
- in
- \begin_inset Formula $\gg$
- \end_inset
- , when mapped backed to
- \begin_inset Formula $G$
- \end_inset
- via the exponential map we obtain
- \begin_inset Formula
- \[
- e^{Z}=e^{X+Y}=e^{X}e^{Y}
- \]
- \end_inset
- However, this does
- \emph on
- not
- \emph default
- hold for non-commutative Lie groups:
- \begin_inset Formula
- \[
- Z=\log(e^{X}e^{Y})\neq X+Y
- \]
- \end_inset
- Instead,
- \begin_inset Formula $Z$
- \end_inset
- can be calculated using the Baker-Campbell-Hausdorff (BCH) formula
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Hall00book"
- \end_inset
- \begin_inset Note Note
- status collapsed
- \begin_layout Plain Layout
- http://en.wikipedia.org/wiki/Baker–Campbell–Hausdorff_formula
- \end_layout
- \end_inset
- :
- \begin_inset Formula
- \[
- Z=X+Y+[X,Y]/2+[X-Y,[X,Y]]/12-[Y,[X,[X,Y]]]/24+\ldots
- \]
- \end_inset
- For commutative groups the bracket is zero and we recover
- \begin_inset Formula $Z=X+Y$
- \end_inset
- .
- For non-commutative groups we can use the BCH formula to approximate it.
- \end_layout
- \begin_layout Subsection
- Exponential Coordinates
- \end_layout
- \begin_layout Standard
- For
- \begin_inset Formula $n$
- \end_inset
- -dimensional matrix Lie groups, as a vector space the Lie algebra
- \begin_inset Formula $\gg$
- \end_inset
- is isomorphic to
- \begin_inset Formula $\mathbb{R}^{n}$
- \end_inset
- , and we can define the hat operator
- \begin_inset CommandInset citation
- LatexCommand cite
- after "page 41"
- key "Murray94book"
- \end_inset
- ,
- \begin_inset Formula
- \[
- \hat{}:x\in\mathbb{R}^{n}\rightarrow\xhat\in\gg
- \]
- \end_inset
- which maps
- \begin_inset Formula $n$
- \end_inset
- -vectors
- \begin_inset Formula $x\in\mathbb{R}^{n}$
- \end_inset
- to elements of
- \begin_inset Formula $\gg$
- \end_inset
- .
- In the case of matrix Lie groups, the elements
- \begin_inset Formula $\xhat$
- \end_inset
- of
- \begin_inset Formula $\gg$
- \end_inset
- are also
- \begin_inset Formula $n\times n$
- \end_inset
- matrices, and the map is given by
- \begin_inset Formula
- \begin{equation}
- \xhat=\sum_{i=1}^{n}x_{i}G^{i}\label{eq:generators}
- \end{equation}
- \end_inset
- where the
- \begin_inset Formula $G^{i}$
- \end_inset
- are
- \begin_inset Formula $n\times n$
- \end_inset
- matrices known as Lie group generators.
- The meaning of the map
- \begin_inset Formula $x\rightarrow\xhat$
- \end_inset
- will depend on the group
- \begin_inset Formula $G$
- \end_inset
- and will generally have an intuitive interpretation.
- \end_layout
- \begin_layout Subsection
- Actions
- \end_layout
- \begin_layout Standard
- An important concept is that of a group element acting on an element of
- a manifold
- \begin_inset Formula $M$
- \end_inset
- .
- For example, 2D rotations act on 2D points, 3D rotations act on 3D points,
- etc.
- In particular, a
- \series bold
- left action
- \series default
- of
- \begin_inset Formula $G$
- \end_inset
- on
- \begin_inset Formula $M$
- \end_inset
- is defined as a smooth map
- \begin_inset Formula $\Phi:G\times M\rightarrow M$
- \end_inset
- such that
- \begin_inset CommandInset citation
- LatexCommand cite
- after "Appendix A"
- key "Murray94book"
- \end_inset
- :
- \end_layout
- \begin_layout Enumerate
- The identity element
- \begin_inset Formula $e$
- \end_inset
- has no effect, i.e.,
- \begin_inset Formula $\Phi(e,p)=p$
- \end_inset
- \end_layout
- \begin_layout Enumerate
- Composing two actions can be combined into one action:
- \begin_inset Formula $\Phi(g,\Phi(h,p))=\Phi(gh,p)$
- \end_inset
- \end_layout
- \begin_layout Standard
- The (usual) action of an
- \begin_inset Formula $n$
- \end_inset
- -dimensional matrix group
- \begin_inset Formula $G$
- \end_inset
- is matrix-vector multiplication on
- \begin_inset Formula $\mathbb{R}^{n}$
- \end_inset
- ,
- \begin_inset Formula
- \[
- q=Ap
- \]
- \end_inset
- with
- \begin_inset Formula $p,q\in\mathbb{R}^{n}$
- \end_inset
- and
- \begin_inset Formula $A\in G\subseteq GL(n)$
- \end_inset
- .
-
- \end_layout
- \begin_layout Subsection
- The Adjoint Map and Adjoint Representation
- \end_layout
- \begin_layout Standard
- Suppose a point
- \begin_inset Formula $p$
- \end_inset
- is specified as
- \begin_inset Formula $p'$
- \end_inset
- in the frame
- \begin_inset Formula $T$
- \end_inset
- , i.e.,
- \begin_inset Formula $p'=Tp$
- \end_inset
- , where
- \begin_inset Formula $T$
- \end_inset
- transforms from the global coordinates
- \begin_inset Formula $p$
- \end_inset
- to the local frame
- \begin_inset Formula $p'$
- \end_inset
- .
- To apply an action
- \begin_inset Formula $A$
- \end_inset
- we first need to undo
- \begin_inset Formula $T$
- \end_inset
- , then apply
- \begin_inset Formula $A$
- \end_inset
- , and then transform the result back to
- \begin_inset Formula $T$
- \end_inset
- :
- \begin_inset Formula
- \[
- q'=TAT^{-1}p'
- \]
- \end_inset
- The matrix
- \begin_inset Formula $TAT^{-1}$
- \end_inset
- is said to be conjugate to
- \begin_inset Formula $A$
- \end_inset
- , and this is a central element of group theory.
- \end_layout
- \begin_layout Standard
- In general, the
- \series bold
- adjoint map
- \series default
-
- \begin_inset Formula $\AAdd g$
- \end_inset
- maps a group element
- \begin_inset Formula $a\in G$
- \end_inset
- to its
- \series bold
- conjugate
- \series default
-
- \begin_inset Formula $gag^{-1}$
- \end_inset
- by
- \begin_inset Formula $g$
- \end_inset
- .
- This map captures conjugacy in the group
- \begin_inset Formula $G$
- \end_inset
- , but there is an equivalent notion in the Lie algebra
- \begin_inset Formula $\mathfrak{\gg}$
- \end_inset
- ,
- \begin_inset Note Note
- status open
- \begin_layout Plain Layout
- http://en.wikipedia.org/wiki/Exponential_map
- \end_layout
- \end_inset
- \begin_inset Formula
- \[
- \AAdd ge^{\xhat}=g\exp\left(\xhat\right)g^{-1}=\exp(\Ad g{\xhat})
- \]
- \end_inset
- where
- \begin_inset Formula $\Ad g:\gg\rightarrow\mathfrak{\gg}$
- \end_inset
- is a map parameterized by a group element
- \begin_inset Formula $g$
- \end_inset
- , and is called the
- \emph on
- adjoint representation
- \emph default
- .
- The intuitive explanation is that a change
- \begin_inset Formula $\exp\left(\xhat\right)$
- \end_inset
- defined around the origin, but applied at the group element
- \begin_inset Formula $g$
- \end_inset
- , can be written in one step by taking the adjoint
- \begin_inset Formula $\Ad g{\xhat}$
- \end_inset
- of
- \begin_inset Formula $\xhat$
- \end_inset
- .
-
- \end_layout
- \begin_layout Standard
- In the special case of matrix Lie groups the adjoint can be written as
- \begin_inset Note Note
- status collapsed
- \begin_layout Plain Layout
- http://en.wikipedia.org/wiki/Adjoint_representation_of_a_Lie_group
- \end_layout
- \end_inset
- \begin_inset Formula
- \[
- \Ad T{\xhat}\define T\xhat T^{-1}
- \]
- \end_inset
- and hence we have
- \end_layout
- \begin_layout Standard
- \begin_inset Formula
- \begin{equation}
- Te^{\xhat}T^{-1}=e^{T\xhat T^{-1}}\label{eq:matrixAdjoint}
- \end{equation}
- \end_inset
- where both
- \begin_inset Formula $T\in G$
- \end_inset
- and
- \begin_inset Formula $\xhat\in\gg$
- \end_inset
- are
- \begin_inset Formula $n\times n$
- \end_inset
- matrices for an
- \begin_inset Formula $n$
- \end_inset
- -dimensional Lie group.
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- 2D Rotations
- \end_layout
- \begin_layout Standard
- We first look at a very simple group, the 2D rotations.
- \end_layout
- \begin_layout Subsection
- Basics
- \end_layout
- \begin_layout Standard
- The Lie group
- \begin_inset Formula $\SOtwo$
- \end_inset
- is a subgroup of the general linear group
- \begin_inset Formula $GL(2)$
- \end_inset
- of
- \begin_inset Formula $2\times2$
- \end_inset
- invertible matrices.
- Its Lie algebra
- \begin_inset Formula $\sotwo$
- \end_inset
- is the vector space of
- \begin_inset Formula $2\times2$
- \end_inset
- skew-symmetric matrices.
- Since
- \begin_inset Formula $\SOtwo$
- \end_inset
- is a one-dimensional manifold,
- \begin_inset Formula $\sotwo$
- \end_inset
- is isomorphic to
- \begin_inset Formula $\mathbb{R}$
- \end_inset
- and we define
- \begin_inset Formula
- \[
- \hat{}:\mathbb{R}\rightarrow\sotwo
- \]
- \end_inset
- \begin_inset Formula
- \[
- \hat{}:\omega\rightarrow\what=\skew{\omega}
- \]
- \end_inset
- which maps the angle
- \begin_inset Formula $\omega$
- \end_inset
- to the
- \begin_inset Formula $2\times2$
- \end_inset
- skew-symmetric matrix
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- \begin_inset Formula $\skew{\omega}$
- \end_inset
- :
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- \begin_inset Formula
- \[
- \skew{\omega}=\left[\begin{array}{cc}
- 0 & -\omega\\
- \omega & 0
- \end{array}\right]
- \]
- \end_inset
- The exponential map can be computed in closed form as
- \begin_inset Formula
- \[
- e^{\skew{\omega}}=\left[\begin{array}{cc}
- \cos\omega & -\sin\omega\\
- \sin\omega & \cos\omega
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- \begin_inset CommandInset label
- LatexCommand label
- name "sub:Diagonalized2D"
- \end_inset
- Diagonalized Form
- \end_layout
- \begin_layout Standard
- The matrix
- \begin_inset Formula $\skew 1$
- \end_inset
- can be diagonalized (see
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Hall00book"
- \end_inset
- ) with eigenvalues
- \begin_inset Formula $-i$
- \end_inset
- and
- \begin_inset Formula $i$
- \end_inset
- , and eigenvectors
- \begin_inset Formula $\left[\begin{array}{c}
- 1\\
- i
- \end{array}\right]$
- \end_inset
- and
- \begin_inset Formula $\left[\begin{array}{c}
- i\\
- 1
- \end{array}\right]$
- \end_inset
- .
- Readers familiar with projective geometry will recognize these as the circular
- points when promoted to homogeneous coordinates.
- In particular:
- \begin_inset Formula
- \[
- \skew{\omega}=\left[\begin{array}{cc}
- 0 & -\omega\\
- \omega & 0
- \end{array}\right]=\left[\begin{array}{cc}
- 1 & i\\
- i & 1
- \end{array}\right]\left[\begin{array}{cc}
- -i\omega & 0\\
- 0 & i\omega
- \end{array}\right]\left[\begin{array}{cc}
- 1 & i\\
- i & 1
- \end{array}\right]^{-1}
- \]
- \end_inset
- and hence
- \begin_inset Formula
- \[
- e^{\skew{\omega}}=\frac{1}{2}\left[\begin{array}{cc}
- 1 & i\\
- i & 1
- \end{array}\right]\left[\begin{array}{cc}
- e^{-i\omega} & 0\\
- 0 & e^{i\omega}
- \end{array}\right]\left[\begin{array}{cc}
- 1 & -i\\
- -i & 1
- \end{array}\right]=\left[\begin{array}{cc}
- \cos\omega & -\sin\omega\\
- \sin\omega & \cos\omega
- \end{array}\right]
- \]
- \end_inset
- where the latter can be shown using
- \begin_inset Formula $e^{i\omega}=\cos\omega+i\sin\omega$
- \end_inset
- .
- \end_layout
- \begin_layout Subsection
- Adjoint
- \end_layout
- \begin_layout Standard
- The adjoint for
- \begin_inset Formula $\sotwo$
- \end_inset
- is trivially equal to the identity, as is the case for
- \emph on
- all
- \emph default
- commutative groups:
- \begin_inset Formula
- \begin{eqnarray*}
- \Ad R\what & = & \left[\begin{array}{cc}
- \cos\theta & -\sin\theta\\
- \sin\theta & \cos\theta
- \end{array}\right]\left[\begin{array}{cc}
- 0 & -\omega\\
- \omega & 0
- \end{array}\right]\left[\begin{array}{cc}
- \cos\theta & -\sin\theta\\
- \sin\theta & \cos\theta
- \end{array}\right]^{T}\\
- & = & \omega\left[\begin{array}{cc}
- -\sin\theta & -\cos\theta\\
- \cos\theta & -\sin\theta
- \end{array}\right]\left[\begin{array}{cc}
- \cos\theta & \sin\theta\\
- -\sin\theta & \cos\theta
- \end{array}\right]=\left[\begin{array}{cc}
- 0 & -\omega\\
- \omega & 0
- \end{array}\right]
- \end{eqnarray*}
- \end_inset
- i.e.,
- \begin_inset Formula
- \[
- \Ad R\what=\what
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- Actions
- \end_layout
- \begin_layout Standard
- In the case of
- \begin_inset Formula $\SOtwo$
- \end_inset
- the vector space is
- \begin_inset Formula $\Rtwo$
- \end_inset
- , and the group action corresponds to rotating a point
- \begin_inset Formula
- \[
- q=Rp
- \]
- \end_inset
- We would now like to know what an incremental rotation parameterized by
-
- \begin_inset Formula $\omega$
- \end_inset
- would do:
- \begin_inset Formula
- \[
- q(\text{\omega})=Re^{\skew{\omega}}p
- \]
- \end_inset
- For small angles
- \begin_inset Formula $\omega$
- \end_inset
- we have
- \begin_inset Formula
- \[
- e^{\skew{\omega}}\approx I+\skew{\omega}=I+\omega\skew 1
- \]
- \end_inset
- where
- \begin_inset Formula $\skew 1$
- \end_inset
- acts like a restricted
- \begin_inset Quotes eld
- \end_inset
- cross product
- \begin_inset Quotes erd
- \end_inset
- in the plane on points:
- \begin_inset Formula
- \begin{equation}
- \skew 1\left[\begin{array}{c}
- x\\
- y
- \end{array}\right]=R_{\pi/2}\left[\begin{array}{c}
- x\\
- y
- \end{array}\right]=\left[\begin{array}{c}
- -y\\
- x
- \end{array}\right]\label{eq:RestrictedCross}
- \end{equation}
- \end_inset
- Hence the derivative of the action is given as
- \begin_inset Formula
- \[
- \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\skew{\omega}}p\right)=R\deriv{}{\omega}\left(\omega\skew 1p\right)=RH_{p}
- \]
- \end_inset
- where
- \begin_inset Formula $H_{p}$
- \end_inset
- is a
- \begin_inset Formula $2\times1$
- \end_inset
- matrix that depends on
- \begin_inset Formula $p$
- \end_inset
- :
- \begin_inset Formula
- \[
- H_{p}\define\skew 1p=\left[\begin{array}{c}
- -p_{y}\\
- p_{x}
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- 2D Rigid Transformations
- \end_layout
- \begin_layout Subsection
- Basics
- \end_layout
- \begin_layout Standard
- The Lie group
- \begin_inset Formula $\SEtwo$
- \end_inset
- is a subgroup of the general linear group
- \begin_inset Formula $GL(3)$
- \end_inset
- of
- \begin_inset Formula $3\times3$
- \end_inset
- invertible matrices of the form
- \begin_inset Formula
- \[
- T\define\left[\begin{array}{cc}
- R & t\\
- 0 & 1
- \end{array}\right]
- \]
- \end_inset
- where
- \begin_inset Formula $R\in\SOtwo$
- \end_inset
- is a rotation matrix and
- \begin_inset Formula $t\in\Rtwo$
- \end_inset
- is a translation vector.
-
- \begin_inset Formula $\SEtwo$
- \end_inset
- is the
- \emph on
- semi-direct product
- \emph default
- of
- \begin_inset Formula $\Rtwo$
- \end_inset
- by
- \begin_inset Formula $SO(2)$
- \end_inset
- , written as
- \begin_inset Formula $\SEtwo=\Rtwo\rtimes\SOtwo$
- \end_inset
- .
- In particular, any element
- \begin_inset Formula $T$
- \end_inset
- of
- \begin_inset Formula $\SEtwo$
- \end_inset
- can be written as
- \begin_inset Formula
- \[
- T=\left[\begin{array}{cc}
- 0 & t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{cc}
- R & 0\\
- 0 & 1
- \end{array}\right]
- \]
- \end_inset
- and they compose as
- \begin_inset Formula
- \[
- T_{1}T_{2}=\left[\begin{array}{cc}
- R_{1} & t_{1}\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{cc}
- R_{2} & t_{2}\\
- 0 & 1
- \end{array}\right]=\left[\begin{array}{cc}
- R_{1}R_{2} & R_{1}t_{2}+t_{1}\\
- 0 & 1
- \end{array}\right]
- \]
- \end_inset
- Hence, an alternative way of writing down elements of
- \begin_inset Formula $\SEtwo$
- \end_inset
- is as the ordered pair
- \begin_inset Formula $(R,\,t)$
- \end_inset
- , with composition defined a
- \begin_inset Formula
- \[
- (R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
- \]
- \end_inset
- \end_layout
- \begin_layout Standard
- The corresponding Lie algebra
- \begin_inset Formula $\setwo$
- \end_inset
- is the vector space of
- \begin_inset Formula $3\times3$
- \end_inset
- twists
- \begin_inset Formula $\xihat$
- \end_inset
- parameterized by the
- \emph on
- twist coordinates
- \emph default
-
- \begin_inset Formula $\xi\in\Rthree$
- \end_inset
- , with the mapping
- \begin_inset Formula
- \[
- \xi\define\left[\begin{array}{c}
- v\\
- \omega
- \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
- \skew{\omega} & v\\
- 0 & 0
- \end{array}\right]
- \]
- \end_inset
- Note we think of robots as having a pose
- \begin_inset Formula $(x,y,\theta)$
- \end_inset
- and hence I reserved the first two components for translation and the last
- for rotation.
-
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- The corresponding Lie group generators are
- \begin_inset Formula
- \[
- G^{x}=\left[\begin{array}{ccc}
- 0 & 0 & 1\\
- 0 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{y}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 1\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{\theta}=\left[\begin{array}{ccc}
- 0 & -1 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]
- \]
- \end_inset
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- Applying the exponential map to a twist
- \begin_inset Formula $\xi$
- \end_inset
- yields a screw motion yielding an element in
- \begin_inset Formula $\SEtwo$
- \end_inset
- :
- \begin_inset Formula
- \[
- T=e^{\xihat}=\left(e^{\skew{\omega}},(I-e^{\skew{\omega}})\frac{v^{\perp}}{\omega}\right)
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- The Adjoint Map
- \end_layout
- \begin_layout Standard
- The adjoint is
- \begin_inset Formula
- \begin{eqnarray}
- \Ad T{\xihat} & = & T\xihat T^{-1}\nonumber \\
- & = & =\left[\begin{array}{cc}
- R & t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{cc}
- \skew{\omega} & v\\
- 0 & 0
- \end{array}\right]\left[\begin{array}{cc}
- R^{T} & -R^{T}t\\
- 0 & 1
- \end{array}\right]\nonumber \\
- & = & \left[\begin{array}{cc}
- \skew{\omega} & -\skew{\omega}t+Rv\\
- 0 & 0
- \end{array}\right]\nonumber \\
- & = & \left[\begin{array}{cc}
- \skew{\omega} & Rv-t^{\perp}\omega\\
- 0 & 0
- \end{array}\right]\label{eq:adjointSE2}
- \end{eqnarray}
- \end_inset
- From this we can express the Adjoint map in terms of plane twist coordinates:
- \begin_inset Formula
- \[
- \left[\begin{array}{c}
- v'\\
- \omega'
- \end{array}\right]=\left[\begin{array}{cc}
- R & -t^{\perp}\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{c}
- v\\
- \omega
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- Actions
- \end_layout
- \begin_layout Standard
- The action of
- \begin_inset Formula $\SEtwo$
- \end_inset
- on 2D points is done by embedding the points in
- \begin_inset Formula $\mathbb{R}^{3}$
- \end_inset
- by using homogeneous coordinates
- \begin_inset Formula
- \[
- \hat{q}=\left[\begin{array}{c}
- q\\
- 1
- \end{array}\right]=\left[\begin{array}{cc}
- R & t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{c}
- p\\
- 1
- \end{array}\right]=T\hat{p}
- \]
- \end_inset
- Analoguous to
- \begin_inset Formula $\SEthree$
- \end_inset
- (see below), we can compute a velocity
- \begin_inset Formula $\xihat\hat{p}$
- \end_inset
- in the local
- \begin_inset Formula $T$
- \end_inset
- frame:
- \begin_inset Formula
- \[
- \xihat\hat{p}=\left[\begin{array}{cc}
- \skew{\omega} & v\\
- 0 & 0
- \end{array}\right]\left[\begin{array}{c}
- p\\
- 1
- \end{array}\right]=\left[\begin{array}{c}
- \skew{\omega}p+v\\
- 0
- \end{array}\right]
- \]
- \end_inset
- By only taking the top two rows, we can write this as a velocity in
- \begin_inset Formula $\Rtwo$
- \end_inset
- , as the product of a
- \begin_inset Formula $2\times3$
- \end_inset
- matrix
- \begin_inset Formula $H_{p}$
- \end_inset
- that acts upon the exponential coordinates
- \begin_inset Formula $\xi$
- \end_inset
- directly:
- \begin_inset Formula
- \[
- \skew{\omega}p+v=v+R_{\pi/2}p\omega=\left[\begin{array}{cc}
- I_{2} & R_{\pi/2}p\end{array}\right]\left[\begin{array}{c}
- v\\
- \omega
- \end{array}\right]=H_{p}\xi
- \]
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- 3D Rotations
- \end_layout
- \begin_layout Subsection
- Basics
- \end_layout
- \begin_layout Standard
- The Lie group
- \begin_inset Formula $\SOthree$
- \end_inset
- is a subgroup of the general linear group
- \begin_inset Formula $GL(3)$
- \end_inset
- of
- \begin_inset Formula $3\times3$
- \end_inset
- invertible matrices.
- Its Lie algebra
- \begin_inset Formula $\sothree$
- \end_inset
- is the vector space of
- \begin_inset Formula $3\times3$
- \end_inset
- skew-symmetric matrices
- \begin_inset Formula $\what$
- \end_inset
- .
- Since
- \begin_inset Formula $\SOthree$
- \end_inset
- is a three-dimensional manifold,
- \begin_inset Formula $\sothree$
- \end_inset
- is isomorphic to
- \begin_inset Formula $\Rthree$
- \end_inset
- and we define the map
- \begin_inset Formula
- \[
- \hat{}:\Rthree\rightarrow\sothree
- \]
- \end_inset
- \begin_inset Formula
- \[
- \hat{}:\omega\rightarrow\what=\Skew{\omega}
- \]
- \end_inset
- which maps 3-vectors
- \begin_inset Formula $\omega$
- \end_inset
- to skew-symmetric matrices
- \begin_inset Formula $\Skew{\omega}$
- \end_inset
- :
- \begin_inset Formula
- \[
- \Skew{\omega}=\left[\begin{array}{ccc}
- 0 & -\omega_{z} & \omega_{y}\\
- \omega_{z} & 0 & -\omega_{x}\\
- -\omega_{y} & \omega_{x} & 0
- \end{array}\right]=\omega_{x}G^{x}+\omega_{y}G^{y}+\omega_{z}G^{z}
- \]
- \end_inset
- Here the matrices
- \begin_inset Formula $G^{i}$
- \end_inset
- are the generators for
- \begin_inset Formula $\SOthree$
- \end_inset
- ,
- \begin_inset Formula
- \[
- G^{x}=\left(\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & -1\\
- 0 & 1 & 0
- \end{array}\right)\mbox{}G^{y}=\left(\begin{array}{ccc}
- 0 & 0 & 1\\
- 0 & 0 & 0\\
- -1 & 0 & 0
- \end{array}\right)\mbox{ }G^{z}=\left(\begin{array}{ccc}
- 0 & -1 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right)
- \]
- \end_inset
- corresponding to a rotation around
- \begin_inset Formula $X$
- \end_inset
- ,
- \begin_inset Formula $Y$
- \end_inset
- , and
- \begin_inset Formula $Z$
- \end_inset
- , respectively.
- The Lie bracket
- \begin_inset Formula $[x,y]$
- \end_inset
- in
- \begin_inset Formula $\sothree$
- \end_inset
- corresponds to the cross product
- \begin_inset Formula $x\times y$
- \end_inset
- in
- \begin_inset Formula $\Rthree$
- \end_inset
- .
- \end_layout
- \begin_layout Standard
- Hence, for every
- \begin_inset Formula $3$
- \end_inset
- -vector
- \begin_inset Formula $\omega$
- \end_inset
- there is a corresponding rotation matrix
- \begin_inset Formula
- \[
- R=e^{\Skew{\omega}}
- \]
- \end_inset
- which defines a canonical parameterization of
- \begin_inset Formula $\SOthree$
- \end_inset
- , with
- \begin_inset Formula $\omega$
- \end_inset
- known as the canonical or exponential coordinates.
- It is equivalent to the axis-angle representation for rotations, where
- the unit vector
- \begin_inset Formula $\omega/\theta$
- \end_inset
- defines the rotation axis, and its magnitude the amount of rotation
- \begin_inset Formula $\theta$
- \end_inset
- .
-
- \end_layout
- \begin_layout Standard
- The exponential map can be computed in closed form using
- \series bold
- Rodrigues' formula
- \series default
-
- \begin_inset CommandInset citation
- LatexCommand cite
- after "page 28"
- key "Murray94book"
- \end_inset
- :
- \end_layout
- \begin_layout Standard
- \begin_inset Formula
- \begin{equation}
- e^{\what}=I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}\cos\theta}{\theta^{2}}\what^{2}\label{eq:Rodrigues}
- \end{equation}
- \end_inset
- where
- \begin_inset Formula $\what^{2}=\omega\omega^{T}-I$
- \end_inset
- , with
- \begin_inset Formula $\omega\omega^{T}$
- \end_inset
- the outer product of
- \begin_inset Formula $\omega$
- \end_inset
- .
- Hence, a slightly more efficient variant is
- \begin_inset Formula
- \begin{equation}
- e^{\what}=\left(\cos\theta\right)I+\frac{\sin\theta}{\theta}\what+\frac{1\text{−}cos\theta}{\theta^{2}}\omega\omega^{T}\label{eq:Rodrigues2}
- \end{equation}
- \end_inset
- \end_layout
- \begin_layout Subsection
- Diagonalized Form
- \end_layout
- \begin_layout Standard
- Because a 3D rotation
- \begin_inset Formula $R$
- \end_inset
- leaves the axis
- \begin_inset Formula $\omega$
- \end_inset
- unchanged,
- \begin_inset Formula $R$
- \end_inset
- can be diagonalized as
- \begin_inset Formula
- \[
- R=C\left(\begin{array}{ccc}
- e^{-i\theta} & 0 & 0\\
- 0 & e^{i\theta} & 0\\
- 0 & 0 & 1
- \end{array}\right)C^{-1}
- \]
- \end_inset
- with
- \begin_inset Formula $C=\left(\begin{array}{ccc}
- c_{1} & c_{2} & \omega/\theta\end{array}\right)$
- \end_inset
- , where
- \begin_inset Formula $c_{1}$
- \end_inset
- and
- \begin_inset Formula $c_{2}$
- \end_inset
- are the complex eigenvectors corresponding to the 2D rotation around
- \begin_inset Formula $\omega$
- \end_inset
- .
- This also means that, by
- \begin_inset CommandInset ref
- LatexCommand eqref
- reference "eq:matrixAdjoint"
- \end_inset
- ,
- \begin_inset Formula
- \[
- \hat{\omega}=C\left(\begin{array}{ccc}
- -i\theta & 0 & 0\\
- 0 & i\theta & 0\\
- 0 & 0 & 0
- \end{array}\right)C^{-1}
- \]
- \end_inset
- In this case,
- \begin_inset Formula $C$
- \end_inset
- has complex columns, but we also have
- \begin_inset Formula
- \begin{equation}
- \hat{\omega}=B\left(\begin{array}{ccc}
- 0 & -\theta & 0\\
- \theta & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right)B^{T}\label{eq:OmegaDecomposed}
- \end{equation}
- \end_inset
- with
- \begin_inset Formula $B=\left(\begin{array}{ccc}
- b_{1} & b_{2} & \omega/\theta\end{array}\right)$
- \end_inset
- , where
- \begin_inset Formula $b_{1}$
- \end_inset
- and
- \begin_inset Formula $b_{2}$
- \end_inset
- form a basis for the 2D plane through the origin and perpendicular to
- \begin_inset Formula $\omega$
- \end_inset
- .
- Clearly, from Section
- \begin_inset CommandInset ref
- LatexCommand ref
- reference "sub:Diagonalized2D"
- \end_inset
- , we have
- \begin_inset Formula
- \[
- c_{1}=B\left(\begin{array}{c}
- 1\\
- i\\
- 0
- \end{array}\right)\mbox{\,\,\,\ and\,\,\,\,\,}c_{2}=B\left(\begin{array}{c}
- i\\
- 1\\
- 0
- \end{array}\right)
- \]
- \end_inset
- and when we exponentiate
- \begin_inset CommandInset ref
- LatexCommand eqref
- reference "eq:OmegaDecomposed"
- \end_inset
- we expose the 2D rotation around the axis
- \begin_inset Formula $\omega/\theta$
- \end_inset
- with magnitude
- \begin_inset Formula $\theta$
- \end_inset
- :
- \begin_inset Formula
- \[
- R=B\left(\begin{array}{ccc}
- \cos\theta & -\sin\theta & 0\\
- \sin\theta & \cos\theta & 0\\
- 0 & 0 & 1
- \end{array}\right)B^{T}
- \]
- \end_inset
- The latter form for
- \begin_inset Formula $R$
- \end_inset
- can be used to prove Rodrigues' formula.
- Expanding the above, we get
- \begin_inset Formula
- \[
- R=\left(\cos\theta\right)\left(b_{1}b_{1}^{T}+b_{2}b_{2}^{T}\right)+\left(\sin\theta\right)\left(b_{2}b_{1}^{T}-b_{1}b_{2}^{T}\right)+\omega\omega^{T}/\theta^{2}
- \]
- \end_inset
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \strikeout off
- \uuline off
- \uwave off
- \noun off
- \color none
- \begin_inset Note Note
- status collapsed
- \begin_layout Plain Layout
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \strikeout off
- \uuline off
- \uwave off
- \noun off
- \color none
- \begin_inset Formula
- \begin{eqnarray*}
- R & = & \left(\begin{array}{ccc}
- b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{ccc}
- \cos\theta & -\sin\theta & 0\\
- \sin\theta & \cos\theta & 0\\
- 0 & 0 & 1
- \end{array}\right)\left(\begin{array}{c}
- b_{1}^{T}\\
- b_{2}^{T}\\
- \omega^{T}/\theta
- \end{array}\right)\\
- & = & \left(\begin{array}{ccc}
- b_{1} & b_{2} & \omega/\theta\end{array}\right)\left(\begin{array}{c}
- b_{1}^{T}\cos\theta-b_{2}^{T}\sin\theta\\
- b_{1}^{T}\sin\theta+b_{2}^{T}\cos\theta\\
- \omega^{T}/\theta
- \end{array}\right)\\
- & = & b_{1}b_{1}^{T}\cos\theta-b_{1}b_{2}^{T}\sin\theta+b_{2}b_{1}^{T}\sin\theta+b_{2}b_{2}^{T}\cos\theta+\omega\omega^{T}/\theta^{2}
- \end{eqnarray*}
- \end_inset
- \end_layout
- \end_inset
- Because
- \begin_inset Formula $B$
- \end_inset
- is a rotation matrix, we have
- \begin_inset Formula $BB^{T}=b_{1}b_{1}^{T}+b_{2}b_{2}^{T}+\omega\omega^{T}/\theta^{2}=I$
- \end_inset
- , and using
- \begin_inset CommandInset ref
- LatexCommand eqref
- reference "eq:OmegaDecomposed"
- \end_inset
- it is easy to show that
- \begin_inset Formula $b_{2}b_{1}^{T}-b_{1}b_{2}^{T}=\hat{\omega}/\theta$
- \end_inset
- , hence
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \strikeout default
- \uuline default
- \uwave default
- \noun default
- \color inherit
- \begin_inset Formula
- \[
- R=\left(\cos\theta\right)(I-\omega\omega^{T}/\theta^{2})+\left(\sin\theta\right)\left(\hat{\omega}/\theta\right)+\omega\omega^{T}/\theta^{2}
- \]
- \end_inset
- which is equivalent to
- \begin_inset CommandInset ref
- LatexCommand eqref
- reference "eq:Rodrigues2"
- \end_inset
- .
- \end_layout
- \begin_layout Subsection
- The Adjoint Map
- \end_layout
- \begin_layout Standard
- For rotation matrices
- \begin_inset Formula $R$
- \end_inset
- we can prove the following identity (see
- \begin_inset CommandInset ref
- LatexCommand vref
- reference "proof1"
- \end_inset
- ):
- \begin_inset Formula
- \begin{equation}
- R\Skew{\omega}R^{T}=\Skew{R\omega}\label{eq:property1}
- \end{equation}
- \end_inset
- Hence, given property
- \begin_inset CommandInset ref
- LatexCommand eqref
- reference "eq:property1"
- \end_inset
- , the adjoint map for
- \begin_inset Formula $\sothree$
- \end_inset
- simplifies to
- \begin_inset Formula
- \[
- \Ad R{\Skew{\omega}}=R\Skew{\omega}R^{T}=\Skew{R\omega}
- \]
- \end_inset
- and this can be expressed in exponential coordinates simply by rotating
- the axis
- \begin_inset Formula $\omega$
- \end_inset
- to
- \begin_inset Formula $R\omega$
- \end_inset
- .
-
- \end_layout
- \begin_layout Standard
- As an example, to apply an axis-angle rotation
- \begin_inset Formula $\omega$
- \end_inset
- to a point
- \begin_inset Formula $p$
- \end_inset
- in the frame
- \begin_inset Formula $R$
- \end_inset
- , we could:
- \end_layout
- \begin_layout Enumerate
- First transform
- \begin_inset Formula $p$
- \end_inset
- back to the world frame, apply
- \begin_inset Formula $\omega$
- \end_inset
- , and then rotate back:
- \begin_inset Formula
- \[
- q=Re^{\Skew{\omega}}R^{T}p
- \]
- \end_inset
- \end_layout
- \begin_layout Enumerate
- Immediately apply the transformed axis-angle transformation
- \begin_inset Formula $\Ad R{\Skew{\omega}}=\Skew{R\omega}$
- \end_inset
- :
- \begin_inset Formula
- \[
- q=e^{\Skew{R\omega}}p
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- Actions
- \end_layout
- \begin_layout Standard
- In the case of
- \begin_inset Formula $\SOthree$
- \end_inset
- the vector space is
- \begin_inset Formula $\Rthree$
- \end_inset
- , and the group action corresponds to rotating a point
- \begin_inset Formula
- \[
- q=Rp
- \]
- \end_inset
- We would now like to know what an incremental rotation parameterized by
-
- \begin_inset Formula $\omega$
- \end_inset
- would do:
- \begin_inset Formula
- \[
- q(\omega)=Re^{\Skew{\omega}}p
- \]
- \end_inset
- hence the derivative is:
- \begin_inset Formula
- \[
- \deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p}
- \]
- \end_inset
- To show the last equality note that
- \begin_inset Formula
- \[
- \Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega
- \]
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- 3D Rigid Transformations
- \end_layout
- \begin_layout Standard
- The Lie group
- \begin_inset Formula $\SEthree$
- \end_inset
- is a subgroup of the general linear group
- \begin_inset Formula $GL(4)$
- \end_inset
- of
- \begin_inset Formula $4\times4$
- \end_inset
- invertible matrices of the form
- \begin_inset Formula
- \[
- T\define\left[\begin{array}{cc}
- R & t\\
- 0 & 1
- \end{array}\right]
- \]
- \end_inset
- where
- \begin_inset Formula $R\in\SOthree$
- \end_inset
- is a rotation matrix and
- \begin_inset Formula $t\in\Rthree$
- \end_inset
- is a translation vector.
- An alternative way of writing down elements of
- \begin_inset Formula $\SEthree$
- \end_inset
- is as the ordered pair
- \begin_inset Formula $(R,\,t)$
- \end_inset
- , with composition defined as
- \begin_inset Formula
- \[
- (R_{1},\,t_{1})(R_{2},\,t_{2})=(R_{1}R_{2},\,R{}_{1}t_{2}+t_{1})
- \]
- \end_inset
- Its Lie algebra
- \begin_inset Formula $\sethree$
- \end_inset
- is the vector space of
- \begin_inset Formula $4\times4$
- \end_inset
- twists
- \begin_inset Formula $\xihat$
- \end_inset
- parameterized by the
- \emph on
- twist coordinates
- \emph default
-
- \begin_inset Formula $\xi\in\Rsix$
- \end_inset
- , with the mapping
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Murray94book"
- \end_inset
-
- \begin_inset Formula
- \[
- \xi\define\left[\begin{array}{c}
- \omega\\
- v
- \end{array}\right]\rightarrow\xihat\define\left[\begin{array}{cc}
- \Skew{\omega} & v\\
- 0 & 0
- \end{array}\right]
- \]
- \end_inset
- Note we follow Frank Park's convention and reserve the first three components
- for rotation, and the last three for translation.
- Hence, with this parameterization, the generators for
- \begin_inset Formula $\SEthree$
- \end_inset
- are
- \begin_inset Formula
- \[
- G^{1}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & -1 & 0\\
- 0 & 1 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
- 0 & 0 & 1 & 0\\
- 0 & 0 & 0 & 0\\
- -1 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
- 0 & -1 & 0 & 0\\
- 1 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)
- \]
- \end_inset
- \begin_inset Formula
- \[
- G^{4}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 1\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 1\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 1\\
- 0 & 0 & 0 & 0
- \end{array}\right)
- \]
- \end_inset
- Applying the exponential map to a twist
- \begin_inset Formula $\xi$
- \end_inset
- yields a screw motion yielding an element in
- \begin_inset Formula $\SEthree$
- \end_inset
- :
- \begin_inset Formula
- \[
- T=\exp\xihat
- \]
- \end_inset
- A closed form solution for the exponential map is given in
- \begin_inset CommandInset citation
- LatexCommand cite
- after "page 42"
- key "Murray94book"
- \end_inset
- .
- \end_layout
- \begin_layout Standard
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- \begin_inset Formula
- \[
- \exp\left(\widehat{\left[\begin{array}{c}
- \omega\\
- v
- \end{array}\right]}t\right)=\left[\begin{array}{cc}
- e^{\Skew{\omega}t} & (I-e^{\Skew{\omega}t})\left(\omega\times v\right)+\omega\omega^{T}vt\\
- 0 & 1
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- The Adjoint Map
- \end_layout
- \begin_layout Standard
- The adjoint is
- \begin_inset Formula
- \begin{eqnarray*}
- \Ad T{\xihat} & = & T\xihat T^{-1}\\
- & = & \left[\begin{array}{cc}
- R & t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{cc}
- \Skew{\omega} & v\\
- 0 & 0
- \end{array}\right]\left[\begin{array}{cc}
- R^{T} & -R^{T}t\\
- 0 & 1
- \end{array}\right]\\
- & = & \left[\begin{array}{cc}
- \Skew{R\omega} & -\Skew{R\omega}t+Rv\\
- 0 & 0
- \end{array}\right]\\
- & = & \left[\begin{array}{cc}
- \Skew{R\omega} & t\times R\omega+Rv\\
- 0 & 0
- \end{array}\right]
- \end{eqnarray*}
- \end_inset
- From this we can express the Adjoint map in terms of twist coordinates (see
- also
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Murray94book"
- \end_inset
- and FP):
- \begin_inset Formula
- \[
- \left[\begin{array}{c}
- \omega'\\
- v'
- \end{array}\right]=\left[\begin{array}{cc}
- R & 0\\
- \Skew tR & R
- \end{array}\right]\left[\begin{array}{c}
- \omega\\
- v
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- Actions
- \end_layout
- \begin_layout Standard
- The action of
- \begin_inset Formula $\SEthree$
- \end_inset
- on 3D points is done by embedding the points in
- \begin_inset Formula $\mathbb{R}^{4}$
- \end_inset
- by using homogeneous coordinates
- \begin_inset Formula
- \[
- \hat{q}=\left[\begin{array}{c}
- q\\
- 1
- \end{array}\right]=\left[\begin{array}{c}
- Rp+t\\
- 1
- \end{array}\right]=\left[\begin{array}{cc}
- R & t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{c}
- p\\
- 1
- \end{array}\right]=T\hat{p}
- \]
- \end_inset
- We would now like to know what an incremental pose parameterized by
- \begin_inset Formula $\xi$
- \end_inset
- would do:
- \begin_inset Formula
- \[
- \hat{q}(\xi)=Te^{\xihat}\hat{p}
- \]
- \end_inset
- hence the derivative is
- \begin_inset Formula
- \[
- \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)
- \]
- \end_inset
- where
- \begin_inset Formula $\xihat\hat{p}$
- \end_inset
- corresponds to a velocity in
- \begin_inset Formula $\mathbb{R}^{4}$
- \end_inset
- (in the local
- \begin_inset Formula $T$
- \end_inset
- frame):
- \begin_inset Formula
- \[
- \xihat\hat{p}=\left[\begin{array}{cc}
- \Skew{\omega} & v\\
- 0 & 0
- \end{array}\right]\left[\begin{array}{c}
- p\\
- 1
- \end{array}\right]=\left[\begin{array}{c}
- \omega\times p+v\\
- 0
- \end{array}\right]
- \]
- \end_inset
- Notice how velocities are analogous to points at infinity in projective
- geometry: they correspond to free vectors indicating a direction and magnitude
- of change.
- \end_layout
- \begin_layout Standard
- By only taking the top three rows, we can write this as a velocity in
- \begin_inset Formula $\Rthree$
- \end_inset
- , as the product of a
- \begin_inset Formula $3\times6$
- \end_inset
- matrix
- \begin_inset Formula $H_{p}$
- \end_inset
- that acts upon the exponential coordinates
- \begin_inset Formula $\xi$
- \end_inset
- directly:
- \begin_inset Formula
- \[
- \omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
- -\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
- \omega\\
- v
- \end{array}\right]
- \]
- \end_inset
- yielding the derivative
- \begin_inset Formula
- \[
- \deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=T\left[\begin{array}{cc}
- -\Skew p & I_{3}\\
- 0 & 0
- \end{array}\right]
- \]
- \end_inset
- The inverse action
- \begin_inset Formula $T^{-1}p$
- \end_inset
- is
- \begin_inset Formula
- \[
- \hat{q}=\left[\begin{array}{c}
- q\\
- 1
- \end{array}\right]=\left[\begin{array}{c}
- R^{T}(p-t)\\
- 1
- \end{array}\right]=\left[\begin{array}{cc}
- R^{T} & -R^{T}t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{c}
- p\\
- 1
- \end{array}\right]=T^{-1}\hat{p}
- \]
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- 3D Similarity Transformations
- \end_layout
- \begin_layout Standard
- The group of 3D similarity transformations
- \begin_inset Formula $Sim(3)$
- \end_inset
- is the set of
- \begin_inset Formula $4\times4$
- \end_inset
- invertible matrices of the form
- \begin_inset Formula
- \[
- T\define\left[\begin{array}{cc}
- R & t\\
- 0 & s^{-1}
- \end{array}\right]
- \]
- \end_inset
- where
- \begin_inset Formula $s$
- \end_inset
- is a scalar.
- There are several different conventions in use for the Lie algebra generators,
- but we use
- \begin_inset Formula
- \[
- G^{1}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & -1 & 0\\
- 0 & 1 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{}G^{2}=\left(\begin{array}{cccc}
- 0 & 0 & 1 & 0\\
- 0 & 0 & 0 & 0\\
- -1 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{ }G^{3}=\left(\begin{array}{cccc}
- 0 & -1 & 0 & 0\\
- 1 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)
- \]
- \end_inset
- \begin_inset Formula
- \[
- G^{4}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 1\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{}G^{5}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 1\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{ }G^{6}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 1\\
- 0 & 0 & 0 & 0
- \end{array}\right)\mbox{ }G^{7}=\left(\begin{array}{cccc}
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & 0\\
- 0 & 0 & 0 & -1
- \end{array}\right)
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- Actions
- \end_layout
- \begin_layout Standard
- The action of
- \begin_inset Formula $\SEthree$
- \end_inset
- on 3D points is done by embedding the points in
- \begin_inset Formula $\mathbb{R}^{4}$
- \end_inset
- by using homogeneous coordinates
- \begin_inset Formula
- \[
- \hat{q}=\left[\begin{array}{c}
- q\\
- s^{-1}
- \end{array}\right]=\left[\begin{array}{c}
- Rp+t\\
- s^{-1}
- \end{array}\right]=\left[\begin{array}{cc}
- R & t\\
- 0 & s^{-1}
- \end{array}\right]\left[\begin{array}{c}
- p\\
- 1
- \end{array}\right]=T\hat{p}
- \]
- \end_inset
- The derivative
- \begin_inset Formula $D_{1}f(\xi)$
- \end_inset
- in an incremental change
- \begin_inset Formula $\xi$
- \end_inset
- to
- \begin_inset Formula $T$
- \end_inset
- is given by
- \begin_inset Formula $TH(p)$
- \end_inset
- where
- \begin_inset Formula
- \[
- H(p)=G_{jk}^{i}p^{j}=\left(\begin{array}{ccccccc}
- 0 & z & -y & 1 & 0 & 0 & 0\\
- -z & 0 & x & 0 & 1 & 0 & 0\\
- y & -x & 0 & 0 & 0 & 1 & 0\\
- 0 & 0 & 0 & 0 & 0 & 0 & -1
- \end{array}\right)
- \]
- \end_inset
- In other words
- \begin_inset Formula
- \[
- D_{1}f(\xi)=\left[\begin{array}{cc}
- R & t\\
- 0 & s^{-1}
- \end{array}\right]\left[\begin{array}{ccc}
- -\left[p\right]_{x} & I_{3} & 0\\
- 0 & 0 & -1
- \end{array}\right]=\left[\begin{array}{ccc}
- -R\left[p\right]_{x} & R & -t\\
- 0 & 0 & -s^{-1}
- \end{array}\right]
- \]
- \end_inset
- This is the derivative for the action on homogeneous coordinates.
- Switching back to non-homogeneous coordinates is done by
- \begin_inset Formula
- \[
- \left[\begin{array}{c}
- q\\
- a
- \end{array}\right]\rightarrow q/a
- \]
- \end_inset
- with derivative
- \begin_inset Formula
- \[
- \left[\begin{array}{cc}
- a^{-1}I_{3} & -qa^{-2}\end{array}\right]
- \]
- \end_inset
- For
- \begin_inset Formula $a=s^{-1}$
- \end_inset
- we obtain
- \begin_inset Formula
- \[
- D_{1}f(\xi)=\left[\begin{array}{cc}
- sI_{3} & -qs^{2}\end{array}\right]\left[\begin{array}{ccc}
- -R\left[p\right]_{x} & R & -t\\
- 0 & 0 & -s^{-1}
- \end{array}\right]=\left[\begin{array}{ccc}
- -sR\left[p\right]_{x} & sR & -st+qs\end{array}\right]=\left[\begin{array}{ccc}
- -sR\left[p\right]_{x} & sR & sRp\end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section
- 2D Affine Transformations
- \end_layout
- \begin_layout Standard
- The Lie group
- \begin_inset Formula $Aff(2)$
- \end_inset
- is a subgroup of the general linear group
- \begin_inset Formula $GL(3)$
- \end_inset
- of
- \begin_inset Formula $3\times3$
- \end_inset
- invertible matrices that maps the line infinity to itself, and hence preserves
- paralellism.
- The affine transformation matrices
- \begin_inset Formula $A$
- \end_inset
- can be written as
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Mei08tro"
- \end_inset
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- \begin_inset Formula
- \[
- \left[\begin{array}{ccc}
- m_{11} & m_{12} & t_{1}\\
- m_{21} & m_{22} & t_{2}\\
- 0 & 0 & k
- \end{array}\right]
- \]
- \end_inset
- with
- \begin_inset Formula $M\in GL(2)$
- \end_inset
- ,
- \begin_inset Formula $t\in\Rtwo$
- \end_inset
- , and
- \begin_inset Formula $k$
- \end_inset
- a scalar chosen such that
- \begin_inset Formula $det(A)=1$
- \end_inset
- .
-
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- Note that just as
- \begin_inset Formula $\SEtwo$
- \end_inset
- is a semi-direct product, so too is
- \begin_inset Formula $Aff(2)=\Rtwo\rtimes GL(2)$
- \end_inset
- .
- In particular, any affine transformation
- \begin_inset Formula $A$
- \end_inset
- can be written as
- \begin_inset Formula
- \[
- A=\left[\begin{array}{cc}
- 0 & t\\
- 0 & 1
- \end{array}\right]\left[\begin{array}{cc}
- M & 0\\
- 0 & k
- \end{array}\right]
- \]
- \end_inset
- and they compose as
- \begin_inset Formula
- \[
- A_{1}A_{2}=\left[\begin{array}{cc}
- M_{1} & t_{1}\\
- 0 & k_{1}
- \end{array}\right]\left[\begin{array}{cc}
- M_{2} & t_{2}\\
- 0 & k_{2}
- \end{array}\right]=\left[\begin{array}{cc}
- M_{1}M_{2} & M_{2}t_{2}+k_{2}t_{1}\\
- 0 & k_{1}k_{2}
- \end{array}\right]
- \]
- \end_inset
- From this it can be gleaned that the groups
- \begin_inset Formula $\SOtwo$
- \end_inset
- and
- \begin_inset Formula $\SEtwo$
- \end_inset
- are both subgroups, with
- \begin_inset Formula $\SOtwo\subset\SEtwo\subset\Afftwo$
- \end_inset
- .
-
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- By choosing the generators carefully we maintain this hierarchy among the
- associated Lie algebras.
- In particular,
- \begin_inset Formula $\setwo$
- \end_inset
-
- \begin_inset Formula
- \[
- G^{1}=\left[\begin{array}{ccc}
- 0 & 0 & 1\\
- 0 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 1\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
- 0 & -1 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]
- \]
- \end_inset
- can be extended to the
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- Lie algebra
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
-
- \begin_inset Formula $\afftwo$
- \end_inset
- using the three additional generators
- \begin_inset Formula
- \[
- G^{4}=\left[\begin{array}{ccc}
- 0 & 1 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
- 1 & 0 & 0\\
- 0 & -1 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & -1 & 0\\
- 0 & 0 & 1
- \end{array}\right]
- \]
- \end_inset
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- Hence, the Lie algebra
- \begin_inset Formula $\afftwo$
- \end_inset
- is the vector space of
- \begin_inset Formula $3\times3$
- \end_inset
- incremental affine transformations
- \begin_inset Formula $\ahat$
- \end_inset
- parameterized by 6 parameters
- \begin_inset Formula $\aa\in\mathbb{R}^{6}$
- \end_inset
- , with the mapping
- \begin_inset Formula
- \[
- \aa\rightarrow\ahat\define\left[\begin{array}{ccc}
- a_{5} & a_{4}-a_{3} & a_{1}\\
- a_{4}+a_{3} & -a_{5}-a_{6} & a_{2}\\
- 0 & 0 & a_{6}
- \end{array}\right]
- \]
- \end_inset
- Note that
- \begin_inset Formula $G_{5}$
- \end_inset
- and
- \begin_inset Formula $G_{6}$
- \end_inset
- change the relative scale of
- \begin_inset Formula $x$
- \end_inset
- and
- \begin_inset Formula $y$
- \end_inset
- but without changing the determinant:
- \begin_inset Formula
- \[
- e^{xG_{5}}=\exp\left[\begin{array}{ccc}
- x & 0 & 0\\
- 0 & -x & 0\\
- 0 & 0 & 0
- \end{array}\right]=\left[\begin{array}{ccc}
- e^{x} & 0 & 0\\
- 0 & 1/e^{x} & 0\\
- 0 & 0 & 1
- \end{array}\right]
- \]
- \end_inset
- \begin_inset Formula
- \[
- e^{xG_{6}}=\exp\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & -x & 0\\
- 0 & 0 & x
- \end{array}\right]=\left[\begin{array}{ccc}
- 1 & 0 & 0\\
- 0 & 1/e^{x} & 0\\
- 0 & 0 & e^{x}
- \end{array}\right]
- \]
- \end_inset
- It might be nicer to have the correspondence with scaling
- \begin_inset Formula $x$
- \end_inset
- and
- \begin_inset Formula $y$
- \end_inset
- more direct, by choosing
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- \begin_inset Formula
- \[
- \mbox{ }G^{5}=\left[\begin{array}{ccc}
- 1 & 0 & 0\\
- 0 & 0 & 0\\
- 0 & 0 & -1
- \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 1 & 0\\
- 0 & 0 & -1
- \end{array}\right]
- \]
- \end_inset
- and hence
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
-
- \begin_inset Formula
- \[
- e^{xG_{5}}=\exp\left[\begin{array}{ccc}
- x & 0 & 0\\
- 0 & 0 & 0\\
- 0 & 0 & -x
- \end{array}\right]=\left[\begin{array}{ccc}
- e^{x} & 0 & 0\\
- 0 & 1 & 0\\
- 0 & 0 & 1/e^{x}
- \end{array}\right]
- \]
- \end_inset
- \begin_inset Formula
- \[
- e^{xG_{6}}=\exp\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & x & 0\\
- 0 & 0 & -x
- \end{array}\right]=\left[\begin{array}{ccc}
- 1 & 0 & 0\\
- 0 & e^{x} & 0\\
- 0 & 0 & 1/e^{x}
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Section
- 2D Homographies
- \end_layout
- \begin_layout Standard
- When viewed as operations on images, represented by 2D projective space
-
- \begin_inset Formula $\mathcal{P}^{3}$
- \end_inset
- , 3D rotations are a special case of 2D homographies.
- These are now treated, loosely based on the exposition in
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Mei06iros,Mei08tro"
- \end_inset
- .
- \end_layout
- \begin_layout Subsection
- Basics
- \end_layout
- \begin_layout Standard
- The Lie group
- \begin_inset Formula $\SLthree$
- \end_inset
- is a subgroup of the general linear group
- \begin_inset Formula $GL(3)$
- \end_inset
- of
- \begin_inset Formula $3\times3$
- \end_inset
- invertible matrices with determinant
- \begin_inset Formula $1$
- \end_inset
- .
- The homographies generalize transformations of the 2D projective space,
- and
- \begin_inset Formula $\Afftwo\subset\SLthree$
- \end_inset
- .
-
- \end_layout
- \begin_layout Standard
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- We can extend
- \begin_inset Formula $\afftwo$
- \end_inset
- to the Lie algebra
- \begin_inset Formula $\slthree$
- \end_inset
- by adding two generators
- \begin_inset Formula
- \[
- G^{7}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 0\\
- 1 & 0 & 0
- \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 0\\
- 0 & 1 & 0
- \end{array}\right]
- \]
- \end_inset
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- obtaining the vector space of
- \begin_inset Formula $3\times3$
- \end_inset
- incremental homographies
- \begin_inset Formula $\hhat$
- \end_inset
- parameterized by 8 parameters
- \begin_inset Formula $\hh\in\mathbb{R}^{8}$
- \end_inset
- , with the mapping
- \begin_inset Formula
- \[
- h\rightarrow\hhat\define\left[\begin{array}{ccc}
- h_{5} & h_{4}-h_{3} & h_{1}\\
- h_{4}+h_{3} & -h_{5}-h_{6} & h_{2}\\
- h_{7} & h_{8} & h_{6}
- \end{array}\right]
- \]
- \end_inset
- \end_layout
- \begin_layout Subsection
- Tensor Notation
- \end_layout
- \begin_layout Itemize
- A homography between 2D projective spaces
- \begin_inset Formula $A$
- \end_inset
- and
- \begin_inset Formula $B$
- \end_inset
- can be written in tensor notation
- \begin_inset Formula $H_{A}^{B}$
- \end_inset
- \end_layout
- \begin_layout Itemize
- Applying a homography is then a tensor contraction
- \begin_inset Formula $x^{B}=H_{A}^{B}x^{A}$
- \end_inset
- , mapping points in
- \begin_inset Formula $A$
- \end_inset
- to points in
- \begin_inset Formula $B$
- \end_inset
- .
- \end_layout
- \begin_layout Standard
- \begin_inset Note Note
- status collapsed
- \begin_layout Plain Layout
- The inverse of a homography can be found by contracting with two permutation
- tensors:
- \begin_inset Formula
- \[
- H_{B}^{A}=H_{A_{1}}^{B_{1}}H_{A_{2}}^{B_{2}}\epsilon_{B_{1}B_{2}B}\epsilon^{A_{1}A_{2}A}
- \]
- \end_inset
- \end_layout
- \end_inset
- \begin_inset Note Note
- status collapsed
- \begin_layout Subsection
- The Adjoint Map
- \end_layout
- \begin_layout Plain Layout
- The adjoint can be done using tensor notation.
- Denoting an incremental homography in space
- \begin_inset Formula $A$
- \end_inset
- as
- \begin_inset Formula $\hhat_{A_{1}}^{A_{2}}$
- \end_inset
- , we have, for example for
- \begin_inset Formula $G_{1}$
- \end_inset
- \begin_inset Formula
- \begin{eqnarray*}
- \hhat_{B_{1}}^{B_{2}}=\Ad{H_{A}^{B}}{\hhat_{A_{1}}^{A_{2}}} & = & H_{A_{2}}^{B_{2}}\hhat_{A_{1}}^{A_{2}}H_{B_{1}}^{A_{1}}\\
- & = & H_{A_{2}}^{B_{2}}\left[\begin{array}{ccc}
- 0 & 0 & 1\\
- 0 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{A_{1}A_{2}A_{3}}\\
- & = & H_{1}^{B_{2}}H_{A_{2}}^{B_{2}}H_{A_{3}}^{B_{3}}\epsilon_{B_{1}B_{2}B_{3}}\epsilon^{3A_{2}A_{3}}
- \end{eqnarray*}
- \end_inset
- This does not seem to help.
- \end_layout
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset Newpage pagebreak
- \end_inset
- \end_layout
- \begin_layout Section*
- Appendix: Proof of Property
- \begin_inset CommandInset ref
- LatexCommand ref
- reference "proof1"
- \end_inset
- \end_layout
- \begin_layout Standard
- We can prove the following identity for rotation matrices
- \begin_inset Formula $R$
- \end_inset
- ,
- \begin_inset Formula
- \begin{eqnarray}
- R\Skew{\omega}R^{T} & = & R\Skew{\omega}\left[\begin{array}{ccc}
- a_{1} & a_{2} & a_{3}\end{array}\right]\nonumber \\
- & = & R\left[\begin{array}{ccc}
- \omega\times a_{1} & \omega\times a_{2} & \omega\times a_{3}\end{array}\right]\nonumber \\
- & = & \left[\begin{array}{ccc}
- a_{1}(\omega\times a_{1}) & a_{1}(\omega\times a_{2}) & a_{1}(\omega\times a_{3})\\
- a_{2}(\omega\times a_{1}) & a_{2}(\omega\times a_{2}) & a_{2}(\omega\times a_{3})\\
- a_{3}(\omega\times a_{1}) & a_{3}(\omega\times a_{2}) & a_{3}(\omega\times a_{3})
- \end{array}\right]\nonumber \\
- & = & \left[\begin{array}{ccc}
- \omega(a_{1}\times a_{1}) & \omega(a_{2}\times a_{1}) & \omega(a_{3}\times a_{1})\\
- \omega(a_{1}\times a_{2}) & \omega(a_{2}\times a_{2}) & \omega(a_{3}\times a_{2})\\
- \omega(a_{1}\times a_{3}) & \omega(a_{2}\times a_{3}) & \omega(a_{3}\times a_{3})
- \end{array}\right]\nonumber \\
- & = & \left[\begin{array}{ccc}
- 0 & -\omega a_{3} & \omega a_{2}\\
- \omega a_{3} & 0 & -\omega a_{1}\\
- -\omega a_{2} & \omega a_{1} & 0
- \end{array}\right]\nonumber \\
- & = & \Skew{R\omega}\label{proof1}
- \end{eqnarray}
- \end_inset
- where
- \begin_inset Formula $a_{1}$
- \end_inset
- ,
- \begin_inset Formula $a_{2}$
- \end_inset
- , and
- \begin_inset Formula $a_{3}$
- \end_inset
- are the
- \emph on
- rows
- \emph default
- of
- \begin_inset Formula $R$
- \end_inset
- .
- Above we made use of the orthogonality of rotation matrices and the triple
- product rule:
- \begin_inset Formula
- \[
- a(b\times c)=b(c\times a)=c(a\times b)
- \]
- \end_inset
- Similarly, without proof
- \begin_inset CommandInset citation
- LatexCommand cite
- after "Lemma 2.3"
- key "Murray94book"
- \end_inset
- :
- \begin_inset Formula
- \[
- R(a\times b)=Ra\times Rb
- \]
- \end_inset
- \end_layout
- \begin_layout Section*
- Appendix: Alternative Generators for
- \begin_inset Formula $\slthree$
- \end_inset
- \end_layout
- \begin_layout Standard
- \begin_inset CommandInset citation
- LatexCommand cite
- key "Mei06iros"
- \end_inset
- uses the following generators for
- \begin_inset Formula $\slthree$
- \end_inset
- :
- \family roman
- \series medium
- \shape up
- \size normal
- \emph off
- \bar no
- \noun off
- \color none
- \begin_inset Formula
- \[
- G^{1}=\left[\begin{array}{ccc}
- 0 & 0 & 1\\
- 0 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{2}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 1\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{3}=\left[\begin{array}{ccc}
- 0 & 1 & 0\\
- 0 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]
- \]
- \end_inset
- \begin_inset Formula
- \[
- G^{4}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 1 & 0 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{5}=\left[\begin{array}{ccc}
- 1 & 0 & 0\\
- 0 & -1 & 0\\
- 0 & 0 & 0
- \end{array}\right]\mbox{ }G^{6}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & -1 & 0\\
- 0 & 0 & 1
- \end{array}\right]
- \]
- \end_inset
- \begin_inset Formula
- \[
- G^{7}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 0\\
- 1 & 0 & 0
- \end{array}\right]\mbox{ }G^{8}=\left[\begin{array}{ccc}
- 0 & 0 & 0\\
- 0 & 0 & 0\\
- 0 & 1 & 0
- \end{array}\right]
- \]
- \end_inset
- \family default
- \series default
- \shape default
- \size default
- \emph default
- \bar default
- \noun default
- \color inherit
- We choose to use a different linear combination as the basis.
- \end_layout
- \begin_layout Standard
- \begin_inset CommandInset bibtex
- LatexCommand bibtex
- bibfiles "../../../papers/refs"
- options "plain"
- \end_inset
- \end_layout
- \end_body
- \end_document
|