123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2017 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include <memory>
- #include "Eigen/Cholesky"
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/casts.h"
- #include "ceres/context_impl.h"
- #include "ceres/linear_least_squares_problems.h"
- #include "ceres/linear_solver.h"
- #include "ceres/triplet_sparse_matrix.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- // TODO(sameeragarwal): These tests needs to be re-written, since
- // SparseNormalCholeskySolver is a composition of two classes now,
- // InnerProductComputer and SparseCholesky.
- //
- // So the test should exercise the composition, rather than the
- // numerics of the solver, which are well covered by tests for those
- // classes.
- class SparseNormalCholeskySolverTest : public ::testing::Test {
- protected:
- void SetUp() final {
- std::unique_ptr<LinearLeastSquaresProblem> problem =
- CreateLinearLeastSquaresProblemFromId(2);
- CHECK(problem != nullptr);
- A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));
- b_ = std::move(problem->b);
- D_ = std::move(problem->D);
- }
- void TestSolver(const LinearSolver::Options& options, double* D) {
- Matrix dense_A;
- A_->ToDenseMatrix(&dense_A);
- Matrix lhs = dense_A.transpose() * dense_A;
- if (D != nullptr) {
- lhs += (ConstVectorRef(D, A_->num_cols()).array() *
- ConstVectorRef(D, A_->num_cols()).array())
- .matrix()
- .asDiagonal();
- }
- Vector rhs(A_->num_cols());
- rhs.setZero();
- A_->LeftMultiplyAndAccumulate(b_.get(), rhs.data());
- Vector expected_solution = lhs.llt().solve(rhs);
- std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options));
- LinearSolver::PerSolveOptions per_solve_options;
- per_solve_options.D = D;
- Vector actual_solution(A_->num_cols());
- LinearSolver::Summary summary;
- summary = solver->Solve(
- A_.get(), b_.get(), per_solve_options, actual_solution.data());
- EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS);
- for (int i = 0; i < A_->num_cols(); ++i) {
- EXPECT_NEAR(expected_solution(i), actual_solution(i), 1e-8)
- << "\nExpected: " << expected_solution.transpose()
- << "\nActual: " << actual_solution.transpose();
- }
- }
- void TestSolver(const LinearSolver::Options& options) {
- TestSolver(options, nullptr);
- TestSolver(options, D_.get());
- }
- std::unique_ptr<BlockSparseMatrix> A_;
- std::unique_ptr<double[]> b_;
- std::unique_ptr<double[]> D_;
- };
- #ifndef CERES_NO_SUITESPARSE
- TEST_F(SparseNormalCholeskySolverTest,
- SparseNormalCholeskyUsingSuiteSparsePreOrdering) {
- LinearSolver::Options options;
- options.sparse_linear_algebra_library_type = SUITE_SPARSE;
- options.type = SPARSE_NORMAL_CHOLESKY;
- options.ordering_type = OrderingType::NATURAL;
- ContextImpl context;
- options.context = &context;
- TestSolver(options);
- }
- TEST_F(SparseNormalCholeskySolverTest,
- SparseNormalCholeskyUsingSuiteSparsePostOrdering) {
- LinearSolver::Options options;
- options.sparse_linear_algebra_library_type = SUITE_SPARSE;
- options.type = SPARSE_NORMAL_CHOLESKY;
- options.ordering_type = OrderingType::AMD;
- ContextImpl context;
- options.context = &context;
- TestSolver(options);
- }
- #endif
- #ifndef CERES_NO_ACCELERATE_SPARSE
- TEST_F(SparseNormalCholeskySolverTest,
- SparseNormalCholeskyUsingAccelerateSparsePreOrdering) {
- LinearSolver::Options options;
- options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE;
- options.type = SPARSE_NORMAL_CHOLESKY;
- options.ordering_type = OrderingType::NATURAL;
- ContextImpl context;
- options.context = &context;
- TestSolver(options);
- }
- TEST_F(SparseNormalCholeskySolverTest,
- SparseNormalCholeskyUsingAcceleratePostOrdering) {
- LinearSolver::Options options;
- options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE;
- options.type = SPARSE_NORMAL_CHOLESKY;
- options.ordering_type = OrderingType::AMD;
- ContextImpl context;
- options.context = &context;
- TestSolver(options);
- }
- #endif
- #ifdef CERES_USE_EIGEN_SPARSE
- TEST_F(SparseNormalCholeskySolverTest,
- SparseNormalCholeskyUsingEigenPreOrdering) {
- LinearSolver::Options options;
- options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
- options.type = SPARSE_NORMAL_CHOLESKY;
- options.ordering_type = OrderingType::NATURAL;
- ContextImpl context;
- options.context = &context;
- TestSolver(options);
- }
- TEST_F(SparseNormalCholeskySolverTest,
- SparseNormalCholeskyUsingEigenPostOrdering) {
- LinearSolver::Options options;
- options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
- options.type = SPARSE_NORMAL_CHOLESKY;
- options.ordering_type = OrderingType::AMD;
- ContextImpl context;
- options.context = &context;
- TestSolver(options);
- }
- #endif // CERES_USE_EIGEN_SPARSE
- } // namespace ceres::internal
|