// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2017 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include #include "Eigen/Cholesky" #include "ceres/block_sparse_matrix.h" #include "ceres/casts.h" #include "ceres/context_impl.h" #include "ceres/linear_least_squares_problems.h" #include "ceres/linear_solver.h" #include "ceres/triplet_sparse_matrix.h" #include "ceres/types.h" #include "glog/logging.h" #include "gtest/gtest.h" namespace ceres::internal { // TODO(sameeragarwal): These tests needs to be re-written, since // SparseNormalCholeskySolver is a composition of two classes now, // InnerProductComputer and SparseCholesky. // // So the test should exercise the composition, rather than the // numerics of the solver, which are well covered by tests for those // classes. class SparseNormalCholeskySolverTest : public ::testing::Test { protected: void SetUp() final { std::unique_ptr problem = CreateLinearLeastSquaresProblemFromId(2); CHECK(problem != nullptr); A_.reset(down_cast(problem->A.release())); b_ = std::move(problem->b); D_ = std::move(problem->D); } void TestSolver(const LinearSolver::Options& options, double* D) { Matrix dense_A; A_->ToDenseMatrix(&dense_A); Matrix lhs = dense_A.transpose() * dense_A; if (D != nullptr) { lhs += (ConstVectorRef(D, A_->num_cols()).array() * ConstVectorRef(D, A_->num_cols()).array()) .matrix() .asDiagonal(); } Vector rhs(A_->num_cols()); rhs.setZero(); A_->LeftMultiplyAndAccumulate(b_.get(), rhs.data()); Vector expected_solution = lhs.llt().solve(rhs); std::unique_ptr solver(LinearSolver::Create(options)); LinearSolver::PerSolveOptions per_solve_options; per_solve_options.D = D; Vector actual_solution(A_->num_cols()); LinearSolver::Summary summary; summary = solver->Solve( A_.get(), b_.get(), per_solve_options, actual_solution.data()); EXPECT_EQ(summary.termination_type, LinearSolverTerminationType::SUCCESS); for (int i = 0; i < A_->num_cols(); ++i) { EXPECT_NEAR(expected_solution(i), actual_solution(i), 1e-8) << "\nExpected: " << expected_solution.transpose() << "\nActual: " << actual_solution.transpose(); } } void TestSolver(const LinearSolver::Options& options) { TestSolver(options, nullptr); TestSolver(options, D_.get()); } std::unique_ptr A_; std::unique_ptr b_; std::unique_ptr D_; }; #ifndef CERES_NO_SUITESPARSE TEST_F(SparseNormalCholeskySolverTest, SparseNormalCholeskyUsingSuiteSparsePreOrdering) { LinearSolver::Options options; options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.type = SPARSE_NORMAL_CHOLESKY; options.ordering_type = OrderingType::NATURAL; ContextImpl context; options.context = &context; TestSolver(options); } TEST_F(SparseNormalCholeskySolverTest, SparseNormalCholeskyUsingSuiteSparsePostOrdering) { LinearSolver::Options options; options.sparse_linear_algebra_library_type = SUITE_SPARSE; options.type = SPARSE_NORMAL_CHOLESKY; options.ordering_type = OrderingType::AMD; ContextImpl context; options.context = &context; TestSolver(options); } #endif #ifndef CERES_NO_ACCELERATE_SPARSE TEST_F(SparseNormalCholeskySolverTest, SparseNormalCholeskyUsingAccelerateSparsePreOrdering) { LinearSolver::Options options; options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.type = SPARSE_NORMAL_CHOLESKY; options.ordering_type = OrderingType::NATURAL; ContextImpl context; options.context = &context; TestSolver(options); } TEST_F(SparseNormalCholeskySolverTest, SparseNormalCholeskyUsingAcceleratePostOrdering) { LinearSolver::Options options; options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; options.type = SPARSE_NORMAL_CHOLESKY; options.ordering_type = OrderingType::AMD; ContextImpl context; options.context = &context; TestSolver(options); } #endif #ifdef CERES_USE_EIGEN_SPARSE TEST_F(SparseNormalCholeskySolverTest, SparseNormalCholeskyUsingEigenPreOrdering) { LinearSolver::Options options; options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.type = SPARSE_NORMAL_CHOLESKY; options.ordering_type = OrderingType::NATURAL; ContextImpl context; options.context = &context; TestSolver(options); } TEST_F(SparseNormalCholeskySolverTest, SparseNormalCholeskyUsingEigenPostOrdering) { LinearSolver::Options options; options.sparse_linear_algebra_library_type = EIGEN_SPARSE; options.type = SPARSE_NORMAL_CHOLESKY; options.ordering_type = OrderingType::AMD; ContextImpl context; options.context = &context; TestSolver(options); } #endif // CERES_USE_EIGEN_SPARSE } // namespace ceres::internal