123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2018 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: vitus@google.com (Michael Vitus)
- #include "ceres/parallel_for.h"
- #include <cmath>
- #include <condition_variable>
- #include <mutex>
- #include <numeric>
- #include <random>
- #include <thread>
- #include <tuple>
- #include <vector>
- #include "ceres/context_impl.h"
- #include "ceres/internal/config.h"
- #include "ceres/parallel_vector_ops.h"
- #include "glog/logging.h"
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- using testing::ElementsAreArray;
- using testing::UnorderedElementsAreArray;
- // Tests the parallel for loop computes the correct result for various number of
- // threads.
- TEST(ParallelFor, NumThreads) {
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- const int size = 16;
- std::vector<int> expected_results(size, 0);
- for (int i = 0; i < size; ++i) {
- expected_results[i] = std::sqrt(i);
- }
- for (int num_threads = 1; num_threads <= 8; ++num_threads) {
- std::vector<int> values(size, 0);
- ParallelFor(&context, 0, size, num_threads, [&values](int i) {
- values[i] = std::sqrt(i);
- });
- EXPECT_THAT(values, ElementsAreArray(expected_results));
- }
- }
- // Tests parallel for loop with ranges
- TEST(ParallelForWithRange, NumThreads) {
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- const int size = 16;
- std::vector<int> expected_results(size, 0);
- for (int i = 0; i < size; ++i) {
- expected_results[i] = std::sqrt(i);
- }
- for (int num_threads = 1; num_threads <= 8; ++num_threads) {
- std::vector<int> values(size, 0);
- ParallelFor(
- &context, 0, size, num_threads, [&values](std::tuple<int, int> range) {
- auto [start, end] = range;
- for (int i = start; i < end; ++i) values[i] = std::sqrt(i);
- });
- EXPECT_THAT(values, ElementsAreArray(expected_results));
- }
- }
- // Tests the parallel for loop with the thread ID interface computes the correct
- // result for various number of threads.
- TEST(ParallelForWithThreadId, NumThreads) {
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- const int size = 16;
- std::vector<int> expected_results(size, 0);
- for (int i = 0; i < size; ++i) {
- expected_results[i] = std::sqrt(i);
- }
- for (int num_threads = 1; num_threads <= 8; ++num_threads) {
- std::vector<int> values(size, 0);
- ParallelFor(
- &context, 0, size, num_threads, [&values](int thread_id, int i) {
- values[i] = std::sqrt(i);
- });
- EXPECT_THAT(values, ElementsAreArray(expected_results));
- }
- }
- // Tests nested for loops do not result in a deadlock.
- TEST(ParallelFor, NestedParallelForDeadlock) {
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- // Increment each element in the 2D matrix.
- std::vector<std::vector<int>> x(3, {1, 2, 3});
- ParallelFor(&context, 0, 3, 2, [&x, &context](int i) {
- std::vector<int>& y = x.at(i);
- ParallelFor(&context, 0, 3, 2, [&y](int j) { ++y.at(j); });
- });
- const std::vector<int> results = {2, 3, 4};
- for (const std::vector<int>& value : x) {
- EXPECT_THAT(value, ElementsAreArray(results));
- }
- }
- // Tests nested for loops do not result in a deadlock for the parallel for with
- // thread ID interface.
- TEST(ParallelForWithThreadId, NestedParallelForDeadlock) {
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- // Increment each element in the 2D matrix.
- std::vector<std::vector<int>> x(3, {1, 2, 3});
- ParallelFor(&context, 0, 3, 2, [&x, &context](int thread_id, int i) {
- std::vector<int>& y = x.at(i);
- ParallelFor(&context, 0, 3, 2, [&y](int thread_id, int j) { ++y.at(j); });
- });
- const std::vector<int> results = {2, 3, 4};
- for (const std::vector<int>& value : x) {
- EXPECT_THAT(value, ElementsAreArray(results));
- }
- }
- TEST(ParallelForWithThreadId, UniqueThreadIds) {
- // Ensure the hardware supports more than 1 thread to ensure the test will
- // pass.
- const int num_hardware_threads = std::thread::hardware_concurrency();
- if (num_hardware_threads <= 1) {
- LOG(ERROR)
- << "Test not supported, the hardware does not support threading.";
- return;
- }
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- // Increment each element in the 2D matrix.
- std::vector<int> x(2, -1);
- std::mutex mutex;
- std::condition_variable condition;
- int count = 0;
- ParallelFor(&context,
- 0,
- 2,
- 2,
- [&x, &mutex, &condition, &count](int thread_id, int i) {
- std::unique_lock<std::mutex> lock(mutex);
- x[i] = thread_id;
- ++count;
- condition.notify_all();
- condition.wait(lock, [&]() { return count == 2; });
- });
- EXPECT_THAT(x, UnorderedElementsAreArray({0, 1}));
- }
- // Helper function for partition tests
- bool BruteForcePartition(
- int* costs, int start, int end, int max_partitions, int max_cost);
- // Basic test if MaxPartitionCostIsFeasible and BruteForcePartition agree on
- // simple test-cases
- TEST(GuidedParallelFor, MaxPartitionCostIsFeasible) {
- std::vector<int> costs, cumulative_costs, partition;
- costs = {1, 2, 3, 5, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0};
- cumulative_costs.resize(costs.size());
- std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin());
- const auto dummy_getter = [](const int v) { return v; };
- // [1, 2, 3] [5], [0 ... 0, 7, 0, ... 0]
- EXPECT_TRUE(MaxPartitionCostIsFeasible(0,
- costs.size(),
- 3,
- 7,
- 0,
- cumulative_costs.data(),
- dummy_getter,
- &partition));
- EXPECT_TRUE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 7));
- // [1, 2, 3, 5, 0 ... 0, 7, 0, ... 0]
- EXPECT_TRUE(MaxPartitionCostIsFeasible(0,
- costs.size(),
- 3,
- 18,
- 0,
- cumulative_costs.data(),
- dummy_getter,
- &partition));
- EXPECT_TRUE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 18));
- // Impossible since there is item of cost 7
- EXPECT_FALSE(MaxPartitionCostIsFeasible(0,
- costs.size(),
- 3,
- 6,
- 0,
- cumulative_costs.data(),
- dummy_getter,
- &partition));
- EXPECT_FALSE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 6));
- // Impossible
- EXPECT_FALSE(MaxPartitionCostIsFeasible(0,
- costs.size(),
- 2,
- 10,
- 0,
- cumulative_costs.data(),
- dummy_getter,
- &partition));
- EXPECT_FALSE(BruteForcePartition(costs.data(), 0, costs.size(), 2, 10));
- }
- // Randomized tests for MaxPartitionCostIsFeasible
- TEST(GuidedParallelFor, MaxPartitionCostIsFeasibleRandomized) {
- std::vector<int> costs, cumulative_costs, partition;
- const auto dummy_getter = [](const int v) { return v; };
- // Random tests
- const int kNumTests = 1000;
- const int kMaxElements = 32;
- const int kMaxPartitions = 16;
- const int kMaxElCost = 8;
- std::mt19937 rng;
- std::uniform_int_distribution<int> rng_N(1, kMaxElements);
- std::uniform_int_distribution<int> rng_M(1, kMaxPartitions);
- std::uniform_int_distribution<int> rng_e(0, kMaxElCost);
- for (int t = 0; t < kNumTests; ++t) {
- const int N = rng_N(rng);
- const int M = rng_M(rng);
- int total = 0;
- costs.clear();
- for (int i = 0; i < N; ++i) {
- costs.push_back(rng_e(rng));
- total += costs.back();
- }
- cumulative_costs.resize(N);
- std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin());
- std::uniform_int_distribution<int> rng_seg(0, N - 1);
- int start = rng_seg(rng);
- int end = rng_seg(rng);
- if (start > end) std::swap(start, end);
- ++end;
- int first_admissible = 0;
- for (int threshold = 1; threshold <= total; ++threshold) {
- const bool bruteforce =
- BruteForcePartition(costs.data(), start, end, M, threshold);
- if (bruteforce && !first_admissible) {
- first_admissible = threshold;
- }
- const bool binary_search =
- MaxPartitionCostIsFeasible(start,
- end,
- M,
- threshold,
- start ? cumulative_costs[start - 1] : 0,
- cumulative_costs.data(),
- dummy_getter,
- &partition);
- EXPECT_EQ(bruteforce, binary_search);
- EXPECT_LE(partition.size(), M + 1);
- // check partition itself
- if (binary_search) {
- ASSERT_GT(partition.size(), 1);
- EXPECT_EQ(partition.front(), start);
- EXPECT_EQ(partition.back(), end);
- const int num_partitions = partition.size() - 1;
- EXPECT_LE(num_partitions, M);
- for (int j = 0; j < num_partitions; ++j) {
- int total = 0;
- for (int k = partition[j]; k < partition[j + 1]; ++k) {
- EXPECT_LT(k, end);
- EXPECT_GE(k, start);
- total += costs[k];
- }
- EXPECT_LE(total, threshold);
- }
- }
- }
- }
- }
- TEST(GuidedParallelFor, PartitionRangeForParallelFor) {
- std::vector<int> costs, cumulative_costs, partition;
- const auto dummy_getter = [](const int v) { return v; };
- // Random tests
- const int kNumTests = 1000;
- const int kMaxElements = 32;
- const int kMaxPartitions = 16;
- const int kMaxElCost = 8;
- std::mt19937 rng;
- std::uniform_int_distribution<int> rng_N(1, kMaxElements);
- std::uniform_int_distribution<int> rng_M(1, kMaxPartitions);
- std::uniform_int_distribution<int> rng_e(0, kMaxElCost);
- for (int t = 0; t < kNumTests; ++t) {
- const int N = rng_N(rng);
- const int M = rng_M(rng);
- int total = 0;
- costs.clear();
- for (int i = 0; i < N; ++i) {
- costs.push_back(rng_e(rng));
- total += costs.back();
- }
- cumulative_costs.resize(N);
- std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin());
- std::uniform_int_distribution<int> rng_seg(0, N - 1);
- int start = rng_seg(rng);
- int end = rng_seg(rng);
- if (start > end) std::swap(start, end);
- ++end;
- int first_admissible = 0;
- for (int threshold = 1; threshold <= total; ++threshold) {
- const bool bruteforce =
- BruteForcePartition(costs.data(), start, end, M, threshold);
- if (bruteforce) {
- first_admissible = threshold;
- break;
- }
- }
- EXPECT_TRUE(first_admissible != 0 || total == 0);
- partition = PartitionRangeForParallelFor(
- start, end, M, cumulative_costs.data(), dummy_getter);
- ASSERT_GT(partition.size(), 1);
- EXPECT_EQ(partition.front(), start);
- EXPECT_EQ(partition.back(), end);
- const int num_partitions = partition.size() - 1;
- EXPECT_LE(num_partitions, M);
- for (int j = 0; j < num_partitions; ++j) {
- int total = 0;
- for (int k = partition[j]; k < partition[j + 1]; ++k) {
- EXPECT_LT(k, end);
- EXPECT_GE(k, start);
- total += costs[k];
- }
- EXPECT_LE(total, first_admissible);
- }
- }
- }
- // Recursively try to partition range into segements of total cost
- // less than max_cost
- bool BruteForcePartition(
- int* costs, int start, int end, int max_partitions, int max_cost) {
- if (start == end) return true;
- if (start < end && max_partitions == 0) return false;
- int total_cost = 0;
- for (int last_curr = start + 1; last_curr <= end; ++last_curr) {
- total_cost += costs[last_curr - 1];
- if (total_cost > max_cost) break;
- if (BruteForcePartition(
- costs, last_curr, end, max_partitions - 1, max_cost))
- return true;
- }
- return false;
- }
- // Tests if guided parallel for loop computes the correct result for various
- // number of threads.
- TEST(GuidedParallelFor, NumThreads) {
- ContextImpl context;
- context.EnsureMinimumThreads(/*num_threads=*/2);
- const int size = 16;
- std::vector<int> expected_results(size, 0);
- for (int i = 0; i < size; ++i) {
- expected_results[i] = std::sqrt(i);
- }
- std::vector<int> costs, cumulative_costs;
- for (int i = 1; i <= size; ++i) {
- int cost = i * i;
- costs.push_back(cost);
- if (i == 1) {
- cumulative_costs.push_back(cost);
- } else {
- cumulative_costs.push_back(cost + cumulative_costs.back());
- }
- }
- for (int num_threads = 1; num_threads <= 8; ++num_threads) {
- std::vector<int> values(size, 0);
- ParallelFor(
- &context,
- 0,
- size,
- num_threads,
- [&values](int i) { values[i] = std::sqrt(i); },
- cumulative_costs.data(),
- [](const int v) { return v; });
- EXPECT_THAT(values, ElementsAreArray(expected_results));
- }
- }
- TEST(ParallelAssign, D2MulX) {
- const int kVectorSize = 1024 * 1024;
- const int kMaxNumThreads = 8;
- const double kEpsilon = 1e-16;
- const Vector D_full = Vector::Random(kVectorSize * 2);
- const ConstVectorRef D(D_full.data() + kVectorSize, kVectorSize);
- const Vector x = Vector::Random(kVectorSize);
- const Vector y_expected = D.array().square() * x.array();
- ContextImpl context;
- context.EnsureMinimumThreads(kMaxNumThreads);
- for (int num_threads = 1; num_threads <= kMaxNumThreads; ++num_threads) {
- Vector y_observed(kVectorSize);
- ParallelAssign(
- &context, num_threads, y_observed, D.array().square() * x.array());
- // We might get non-bit-exact result due to different precision in scalar
- // and vector code. For example, in x86 mode mingw might emit x87
- // instructions for scalar code, thus making bit-exact check fail
- EXPECT_NEAR((y_expected - y_observed).squaredNorm(),
- 0.,
- kEpsilon * y_expected.squaredNorm());
- }
- }
- TEST(ParallelAssign, SetZero) {
- const int kVectorSize = 1024 * 1024;
- const int kMaxNumThreads = 8;
- ContextImpl context;
- context.EnsureMinimumThreads(kMaxNumThreads);
- for (int num_threads = 1; num_threads <= kMaxNumThreads; ++num_threads) {
- Vector x = Vector::Random(kVectorSize);
- ParallelSetZero(&context, num_threads, x);
- CHECK_EQ(x.squaredNorm(), 0.);
- }
- }
- } // namespace ceres::internal
|