// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2018 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: vitus@google.com (Michael Vitus) #include "ceres/parallel_for.h" #include #include #include #include #include #include #include #include #include "ceres/context_impl.h" #include "ceres/internal/config.h" #include "ceres/parallel_vector_ops.h" #include "glog/logging.h" #include "gmock/gmock.h" #include "gtest/gtest.h" namespace ceres::internal { using testing::ElementsAreArray; using testing::UnorderedElementsAreArray; // Tests the parallel for loop computes the correct result for various number of // threads. TEST(ParallelFor, NumThreads) { ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); const int size = 16; std::vector expected_results(size, 0); for (int i = 0; i < size; ++i) { expected_results[i] = std::sqrt(i); } for (int num_threads = 1; num_threads <= 8; ++num_threads) { std::vector values(size, 0); ParallelFor(&context, 0, size, num_threads, [&values](int i) { values[i] = std::sqrt(i); }); EXPECT_THAT(values, ElementsAreArray(expected_results)); } } // Tests parallel for loop with ranges TEST(ParallelForWithRange, NumThreads) { ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); const int size = 16; std::vector expected_results(size, 0); for (int i = 0; i < size; ++i) { expected_results[i] = std::sqrt(i); } for (int num_threads = 1; num_threads <= 8; ++num_threads) { std::vector values(size, 0); ParallelFor( &context, 0, size, num_threads, [&values](std::tuple range) { auto [start, end] = range; for (int i = start; i < end; ++i) values[i] = std::sqrt(i); }); EXPECT_THAT(values, ElementsAreArray(expected_results)); } } // Tests the parallel for loop with the thread ID interface computes the correct // result for various number of threads. TEST(ParallelForWithThreadId, NumThreads) { ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); const int size = 16; std::vector expected_results(size, 0); for (int i = 0; i < size; ++i) { expected_results[i] = std::sqrt(i); } for (int num_threads = 1; num_threads <= 8; ++num_threads) { std::vector values(size, 0); ParallelFor( &context, 0, size, num_threads, [&values](int thread_id, int i) { values[i] = std::sqrt(i); }); EXPECT_THAT(values, ElementsAreArray(expected_results)); } } // Tests nested for loops do not result in a deadlock. TEST(ParallelFor, NestedParallelForDeadlock) { ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); // Increment each element in the 2D matrix. std::vector> x(3, {1, 2, 3}); ParallelFor(&context, 0, 3, 2, [&x, &context](int i) { std::vector& y = x.at(i); ParallelFor(&context, 0, 3, 2, [&y](int j) { ++y.at(j); }); }); const std::vector results = {2, 3, 4}; for (const std::vector& value : x) { EXPECT_THAT(value, ElementsAreArray(results)); } } // Tests nested for loops do not result in a deadlock for the parallel for with // thread ID interface. TEST(ParallelForWithThreadId, NestedParallelForDeadlock) { ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); // Increment each element in the 2D matrix. std::vector> x(3, {1, 2, 3}); ParallelFor(&context, 0, 3, 2, [&x, &context](int thread_id, int i) { std::vector& y = x.at(i); ParallelFor(&context, 0, 3, 2, [&y](int thread_id, int j) { ++y.at(j); }); }); const std::vector results = {2, 3, 4}; for (const std::vector& value : x) { EXPECT_THAT(value, ElementsAreArray(results)); } } TEST(ParallelForWithThreadId, UniqueThreadIds) { // Ensure the hardware supports more than 1 thread to ensure the test will // pass. const int num_hardware_threads = std::thread::hardware_concurrency(); if (num_hardware_threads <= 1) { LOG(ERROR) << "Test not supported, the hardware does not support threading."; return; } ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); // Increment each element in the 2D matrix. std::vector x(2, -1); std::mutex mutex; std::condition_variable condition; int count = 0; ParallelFor(&context, 0, 2, 2, [&x, &mutex, &condition, &count](int thread_id, int i) { std::unique_lock lock(mutex); x[i] = thread_id; ++count; condition.notify_all(); condition.wait(lock, [&]() { return count == 2; }); }); EXPECT_THAT(x, UnorderedElementsAreArray({0, 1})); } // Helper function for partition tests bool BruteForcePartition( int* costs, int start, int end, int max_partitions, int max_cost); // Basic test if MaxPartitionCostIsFeasible and BruteForcePartition agree on // simple test-cases TEST(GuidedParallelFor, MaxPartitionCostIsFeasible) { std::vector costs, cumulative_costs, partition; costs = {1, 2, 3, 5, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0}; cumulative_costs.resize(costs.size()); std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin()); const auto dummy_getter = [](const int v) { return v; }; // [1, 2, 3] [5], [0 ... 0, 7, 0, ... 0] EXPECT_TRUE(MaxPartitionCostIsFeasible(0, costs.size(), 3, 7, 0, cumulative_costs.data(), dummy_getter, &partition)); EXPECT_TRUE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 7)); // [1, 2, 3, 5, 0 ... 0, 7, 0, ... 0] EXPECT_TRUE(MaxPartitionCostIsFeasible(0, costs.size(), 3, 18, 0, cumulative_costs.data(), dummy_getter, &partition)); EXPECT_TRUE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 18)); // Impossible since there is item of cost 7 EXPECT_FALSE(MaxPartitionCostIsFeasible(0, costs.size(), 3, 6, 0, cumulative_costs.data(), dummy_getter, &partition)); EXPECT_FALSE(BruteForcePartition(costs.data(), 0, costs.size(), 3, 6)); // Impossible EXPECT_FALSE(MaxPartitionCostIsFeasible(0, costs.size(), 2, 10, 0, cumulative_costs.data(), dummy_getter, &partition)); EXPECT_FALSE(BruteForcePartition(costs.data(), 0, costs.size(), 2, 10)); } // Randomized tests for MaxPartitionCostIsFeasible TEST(GuidedParallelFor, MaxPartitionCostIsFeasibleRandomized) { std::vector costs, cumulative_costs, partition; const auto dummy_getter = [](const int v) { return v; }; // Random tests const int kNumTests = 1000; const int kMaxElements = 32; const int kMaxPartitions = 16; const int kMaxElCost = 8; std::mt19937 rng; std::uniform_int_distribution rng_N(1, kMaxElements); std::uniform_int_distribution rng_M(1, kMaxPartitions); std::uniform_int_distribution rng_e(0, kMaxElCost); for (int t = 0; t < kNumTests; ++t) { const int N = rng_N(rng); const int M = rng_M(rng); int total = 0; costs.clear(); for (int i = 0; i < N; ++i) { costs.push_back(rng_e(rng)); total += costs.back(); } cumulative_costs.resize(N); std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin()); std::uniform_int_distribution rng_seg(0, N - 1); int start = rng_seg(rng); int end = rng_seg(rng); if (start > end) std::swap(start, end); ++end; int first_admissible = 0; for (int threshold = 1; threshold <= total; ++threshold) { const bool bruteforce = BruteForcePartition(costs.data(), start, end, M, threshold); if (bruteforce && !first_admissible) { first_admissible = threshold; } const bool binary_search = MaxPartitionCostIsFeasible(start, end, M, threshold, start ? cumulative_costs[start - 1] : 0, cumulative_costs.data(), dummy_getter, &partition); EXPECT_EQ(bruteforce, binary_search); EXPECT_LE(partition.size(), M + 1); // check partition itself if (binary_search) { ASSERT_GT(partition.size(), 1); EXPECT_EQ(partition.front(), start); EXPECT_EQ(partition.back(), end); const int num_partitions = partition.size() - 1; EXPECT_LE(num_partitions, M); for (int j = 0; j < num_partitions; ++j) { int total = 0; for (int k = partition[j]; k < partition[j + 1]; ++k) { EXPECT_LT(k, end); EXPECT_GE(k, start); total += costs[k]; } EXPECT_LE(total, threshold); } } } } } TEST(GuidedParallelFor, PartitionRangeForParallelFor) { std::vector costs, cumulative_costs, partition; const auto dummy_getter = [](const int v) { return v; }; // Random tests const int kNumTests = 1000; const int kMaxElements = 32; const int kMaxPartitions = 16; const int kMaxElCost = 8; std::mt19937 rng; std::uniform_int_distribution rng_N(1, kMaxElements); std::uniform_int_distribution rng_M(1, kMaxPartitions); std::uniform_int_distribution rng_e(0, kMaxElCost); for (int t = 0; t < kNumTests; ++t) { const int N = rng_N(rng); const int M = rng_M(rng); int total = 0; costs.clear(); for (int i = 0; i < N; ++i) { costs.push_back(rng_e(rng)); total += costs.back(); } cumulative_costs.resize(N); std::partial_sum(costs.begin(), costs.end(), cumulative_costs.begin()); std::uniform_int_distribution rng_seg(0, N - 1); int start = rng_seg(rng); int end = rng_seg(rng); if (start > end) std::swap(start, end); ++end; int first_admissible = 0; for (int threshold = 1; threshold <= total; ++threshold) { const bool bruteforce = BruteForcePartition(costs.data(), start, end, M, threshold); if (bruteforce) { first_admissible = threshold; break; } } EXPECT_TRUE(first_admissible != 0 || total == 0); partition = PartitionRangeForParallelFor( start, end, M, cumulative_costs.data(), dummy_getter); ASSERT_GT(partition.size(), 1); EXPECT_EQ(partition.front(), start); EXPECT_EQ(partition.back(), end); const int num_partitions = partition.size() - 1; EXPECT_LE(num_partitions, M); for (int j = 0; j < num_partitions; ++j) { int total = 0; for (int k = partition[j]; k < partition[j + 1]; ++k) { EXPECT_LT(k, end); EXPECT_GE(k, start); total += costs[k]; } EXPECT_LE(total, first_admissible); } } } // Recursively try to partition range into segements of total cost // less than max_cost bool BruteForcePartition( int* costs, int start, int end, int max_partitions, int max_cost) { if (start == end) return true; if (start < end && max_partitions == 0) return false; int total_cost = 0; for (int last_curr = start + 1; last_curr <= end; ++last_curr) { total_cost += costs[last_curr - 1]; if (total_cost > max_cost) break; if (BruteForcePartition( costs, last_curr, end, max_partitions - 1, max_cost)) return true; } return false; } // Tests if guided parallel for loop computes the correct result for various // number of threads. TEST(GuidedParallelFor, NumThreads) { ContextImpl context; context.EnsureMinimumThreads(/*num_threads=*/2); const int size = 16; std::vector expected_results(size, 0); for (int i = 0; i < size; ++i) { expected_results[i] = std::sqrt(i); } std::vector costs, cumulative_costs; for (int i = 1; i <= size; ++i) { int cost = i * i; costs.push_back(cost); if (i == 1) { cumulative_costs.push_back(cost); } else { cumulative_costs.push_back(cost + cumulative_costs.back()); } } for (int num_threads = 1; num_threads <= 8; ++num_threads) { std::vector values(size, 0); ParallelFor( &context, 0, size, num_threads, [&values](int i) { values[i] = std::sqrt(i); }, cumulative_costs.data(), [](const int v) { return v; }); EXPECT_THAT(values, ElementsAreArray(expected_results)); } } TEST(ParallelAssign, D2MulX) { const int kVectorSize = 1024 * 1024; const int kMaxNumThreads = 8; const double kEpsilon = 1e-16; const Vector D_full = Vector::Random(kVectorSize * 2); const ConstVectorRef D(D_full.data() + kVectorSize, kVectorSize); const Vector x = Vector::Random(kVectorSize); const Vector y_expected = D.array().square() * x.array(); ContextImpl context; context.EnsureMinimumThreads(kMaxNumThreads); for (int num_threads = 1; num_threads <= kMaxNumThreads; ++num_threads) { Vector y_observed(kVectorSize); ParallelAssign( &context, num_threads, y_observed, D.array().square() * x.array()); // We might get non-bit-exact result due to different precision in scalar // and vector code. For example, in x86 mode mingw might emit x87 // instructions for scalar code, thus making bit-exact check fail EXPECT_NEAR((y_expected - y_observed).squaredNorm(), 0., kEpsilon * y_expected.squaredNorm()); } } TEST(ParallelAssign, SetZero) { const int kVectorSize = 1024 * 1024; const int kMaxNumThreads = 8; ContextImpl context; context.EnsureMinimumThreads(kMaxNumThreads); for (int num_threads = 1; num_threads <= kMaxNumThreads; ++num_threads) { Vector x = Vector::Random(kVectorSize); ParallelSetZero(&context, num_threads, x); CHECK_EQ(x.squaredNorm(), 0.); } } } // namespace ceres::internal