123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // Intel License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000, Intel Corporation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of Intel Corporation may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #include "test_precomp.hpp"
- namespace opencv_test { namespace {
- typedef tuple<Size> OFParams;
- typedef TestWithParam<OFParams> DenseOpticalFlow_DIS;
- typedef TestWithParam<OFParams> DenseOpticalFlow_VariationalRefinement;
- TEST_P(DenseOpticalFlow_DIS, MultithreadReproducibility)
- {
- double MAX_DIF = 0.01;
- double MAX_MEAN_DIF = 0.001;
- int loopsCount = 2;
- RNG rng(0);
- OFParams params = GetParam();
- Size size = get<0>(params);
- int nThreads = cv::getNumThreads();
- if (nThreads == 1)
- throw SkipTestException("Single thread environment");
- for (int iter = 0; iter <= loopsCount; iter++)
- {
- Mat frame1(size, CV_8U);
- randu(frame1, 0, 255);
- Mat frame2(size, CV_8U);
- randu(frame2, 0, 255);
- Ptr<DISOpticalFlow> algo = DISOpticalFlow::create();
- int psz = rng.uniform(4, 16);
- int pstr = rng.uniform(1, psz - 1);
- int grad_iter = rng.uniform(1, 64);
- int var_iter = rng.uniform(0, 10);
- bool use_mean_normalization = !!rng.uniform(0, 2);
- bool use_spatial_propagation = !!rng.uniform(0, 2);
- algo->setFinestScale(0);
- algo->setPatchSize(psz);
- algo->setPatchStride(pstr);
- algo->setGradientDescentIterations(grad_iter);
- algo->setVariationalRefinementIterations(var_iter);
- algo->setUseMeanNormalization(use_mean_normalization);
- algo->setUseSpatialPropagation(use_spatial_propagation);
- cv::setNumThreads(nThreads);
- Mat resMultiThread;
- algo->calc(frame1, frame2, resMultiThread);
- cv::setNumThreads(1);
- Mat resSingleThread;
- algo->calc(frame1, frame2, resSingleThread);
- EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF * frame1.total());
- // resulting flow should be within the frame bounds:
- double min_val, max_val;
- minMaxLoc(resMultiThread, &min_val, &max_val);
- EXPECT_LE(abs(min_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
- EXPECT_LE(abs(max_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
- }
- }
- INSTANTIATE_TEST_CASE_P(FullSet, DenseOpticalFlow_DIS, Values(szODD, szQVGA));
- TEST_P(DenseOpticalFlow_VariationalRefinement, MultithreadReproducibility)
- {
- double MAX_DIF = 0.01;
- double MAX_MEAN_DIF = 0.001;
- float input_flow_rad = 5.0;
- int loopsCount = 2;
- RNG rng(0);
- OFParams params = GetParam();
- Size size = get<0>(params);
- int nThreads = cv::getNumThreads();
- if (nThreads == 1)
- throw SkipTestException("Single thread environment");
- for (int iter = 0; iter <= loopsCount; iter++)
- {
- Mat frame1(size, CV_8U);
- randu(frame1, 0, 255);
- Mat frame2(size, CV_8U);
- randu(frame2, 0, 255);
- Mat flow(size, CV_32FC2);
- randu(flow, -input_flow_rad, input_flow_rad);
- Ptr<VariationalRefinement> var = VariationalRefinement::create();
- var->setAlpha(rng.uniform(1.0f, 100.0f));
- var->setGamma(rng.uniform(0.1f, 10.0f));
- var->setDelta(rng.uniform(0.1f, 10.0f));
- var->setSorIterations(rng.uniform(1, 20));
- var->setFixedPointIterations(rng.uniform(1, 20));
- var->setOmega(rng.uniform(1.01f, 1.99f));
- cv::setNumThreads(nThreads);
- Mat resMultiThread;
- flow.copyTo(resMultiThread);
- var->calc(frame1, frame2, resMultiThread);
- cv::setNumThreads(1);
- Mat resSingleThread;
- flow.copyTo(resSingleThread);
- var->calc(frame1, frame2, resSingleThread);
- EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF);
- EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF * frame1.total());
- // resulting flow should be within the frame bounds:
- double min_val, max_val;
- minMaxLoc(resMultiThread, &min_val, &max_val);
- EXPECT_LE(abs(min_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
- EXPECT_LE(abs(max_val), sqrt( static_cast<double>(size.height * size.height + size.width * size.width)) );
- }
- }
- INSTANTIATE_TEST_CASE_P(FullSet, DenseOpticalFlow_VariationalRefinement, Values(szODD, szQVGA));
- }} // namespace
|