/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { typedef tuple OFParams; typedef TestWithParam DenseOpticalFlow_DIS; typedef TestWithParam DenseOpticalFlow_VariationalRefinement; TEST_P(DenseOpticalFlow_DIS, MultithreadReproducibility) { double MAX_DIF = 0.01; double MAX_MEAN_DIF = 0.001; int loopsCount = 2; RNG rng(0); OFParams params = GetParam(); Size size = get<0>(params); int nThreads = cv::getNumThreads(); if (nThreads == 1) throw SkipTestException("Single thread environment"); for (int iter = 0; iter <= loopsCount; iter++) { Mat frame1(size, CV_8U); randu(frame1, 0, 255); Mat frame2(size, CV_8U); randu(frame2, 0, 255); Ptr algo = DISOpticalFlow::create(); int psz = rng.uniform(4, 16); int pstr = rng.uniform(1, psz - 1); int grad_iter = rng.uniform(1, 64); int var_iter = rng.uniform(0, 10); bool use_mean_normalization = !!rng.uniform(0, 2); bool use_spatial_propagation = !!rng.uniform(0, 2); algo->setFinestScale(0); algo->setPatchSize(psz); algo->setPatchStride(pstr); algo->setGradientDescentIterations(grad_iter); algo->setVariationalRefinementIterations(var_iter); algo->setUseMeanNormalization(use_mean_normalization); algo->setUseSpatialPropagation(use_spatial_propagation); cv::setNumThreads(nThreads); Mat resMultiThread; algo->calc(frame1, frame2, resMultiThread); cv::setNumThreads(1); Mat resSingleThread; algo->calc(frame1, frame2, resSingleThread); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF * frame1.total()); // resulting flow should be within the frame bounds: double min_val, max_val; minMaxLoc(resMultiThread, &min_val, &max_val); EXPECT_LE(abs(min_val), sqrt( static_cast(size.height * size.height + size.width * size.width)) ); EXPECT_LE(abs(max_val), sqrt( static_cast(size.height * size.height + size.width * size.width)) ); } } INSTANTIATE_TEST_CASE_P(FullSet, DenseOpticalFlow_DIS, Values(szODD, szQVGA)); TEST_P(DenseOpticalFlow_VariationalRefinement, MultithreadReproducibility) { double MAX_DIF = 0.01; double MAX_MEAN_DIF = 0.001; float input_flow_rad = 5.0; int loopsCount = 2; RNG rng(0); OFParams params = GetParam(); Size size = get<0>(params); int nThreads = cv::getNumThreads(); if (nThreads == 1) throw SkipTestException("Single thread environment"); for (int iter = 0; iter <= loopsCount; iter++) { Mat frame1(size, CV_8U); randu(frame1, 0, 255); Mat frame2(size, CV_8U); randu(frame2, 0, 255); Mat flow(size, CV_32FC2); randu(flow, -input_flow_rad, input_flow_rad); Ptr var = VariationalRefinement::create(); var->setAlpha(rng.uniform(1.0f, 100.0f)); var->setGamma(rng.uniform(0.1f, 10.0f)); var->setDelta(rng.uniform(0.1f, 10.0f)); var->setSorIterations(rng.uniform(1, 20)); var->setFixedPointIterations(rng.uniform(1, 20)); var->setOmega(rng.uniform(1.01f, 1.99f)); cv::setNumThreads(nThreads); Mat resMultiThread; flow.copyTo(resMultiThread); var->calc(frame1, frame2, resMultiThread); cv::setNumThreads(1); Mat resSingleThread; flow.copyTo(resSingleThread); var->calc(frame1, frame2, resSingleThread); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_INF), MAX_DIF); EXPECT_LE(cv::norm(resSingleThread, resMultiThread, NORM_L1), MAX_MEAN_DIF * frame1.total()); // resulting flow should be within the frame bounds: double min_val, max_val; minMaxLoc(resMultiThread, &min_val, &max_val); EXPECT_LE(abs(min_val), sqrt( static_cast(size.height * size.height + size.width * size.width)) ); EXPECT_LE(abs(max_val), sqrt( static_cast(size.height * size.height + size.width * size.width)) ); } } INSTANTIATE_TEST_CASE_P(FullSet, DenseOpticalFlow_VariationalRefinement, Values(szODD, szQVGA)); }} // namespace