12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- #!/usr/bin/env python
- '''
- Robust line fitting.
- ==================
- Example of using cv.fitLine function for fitting line
- to points in presence of outliers.
- Switch through different M-estimator functions and see,
- how well the robust functions fit the line even
- in case of ~50% of outliers.
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import sys
- PY3 = sys.version_info[0] == 3
- import numpy as np
- import cv2 as cv
- from tests_common import NewOpenCVTests
- w, h = 512, 256
- def toint(p):
- return tuple(map(int, p))
- def sample_line(p1, p2, n, noise=0.0):
- np.random.seed(10)
- p1 = np.float32(p1)
- t = np.random.rand(n,1)
- return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
- dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER']
- class fitline_test(NewOpenCVTests):
- def test_fitline(self):
- noise = 5
- n = 200
- r = 5 / 100.0
- outn = int(n*r)
- p0, p1 = (90, 80), (w-90, h-80)
- line_points = sample_line(p0, p1, n-outn, noise)
- outliers = np.random.rand(outn, 2) * (w, h)
- points = np.vstack([line_points, outliers])
- lines = []
- for name in dist_func_names:
- func = getattr(cv, name)
- vx, vy, cx, cy = cv.fitLine(np.float32(points), func, 0, 0.01, 0.01)
- line = [float(vx), float(vy), float(cx), float(cy)]
- lines.append(line)
- eps = 0.05
- refVec = (np.float32(p1) - p0) / cv.norm(np.float32(p1) - p0)
- for i in range(len(lines)):
- self.assertLessEqual(cv.norm(refVec - lines[i][0:2], cv.NORM_L2), eps)
- if __name__ == '__main__':
- NewOpenCVTests.bootstrap()
|