#!/usr/bin/env python ''' Robust line fitting. ================== Example of using cv.fitLine function for fitting line to points in presence of outliers. Switch through different M-estimator functions and see, how well the robust functions fit the line even in case of ~50% of outliers. ''' # Python 2/3 compatibility from __future__ import print_function import sys PY3 = sys.version_info[0] == 3 import numpy as np import cv2 as cv from tests_common import NewOpenCVTests w, h = 512, 256 def toint(p): return tuple(map(int, p)) def sample_line(p1, p2, n, noise=0.0): np.random.seed(10) p1 = np.float32(p1) t = np.random.rand(n,1) return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER'] class fitline_test(NewOpenCVTests): def test_fitline(self): noise = 5 n = 200 r = 5 / 100.0 outn = int(n*r) p0, p1 = (90, 80), (w-90, h-80) line_points = sample_line(p0, p1, n-outn, noise) outliers = np.random.rand(outn, 2) * (w, h) points = np.vstack([line_points, outliers]) lines = [] for name in dist_func_names: func = getattr(cv, name) vx, vy, cx, cy = cv.fitLine(np.float32(points), func, 0, 0.01, 0.01) line = [float(vx), float(vy), float(cx), float(cy)] lines.append(line) eps = 0.05 refVec = (np.float32(p1) - p0) / cv.norm(np.float32(p1) - p0) for i in range(len(lines)): self.assertLessEqual(cv.norm(refVec - lines[i][0:2], cv.NORM_L2), eps) if __name__ == '__main__': NewOpenCVTests.bootstrap()