123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 |
- (* Content-type: application/vnd.wolfram.mathematica *)
- (*** Wolfram Notebook File ***)
- (* http://www.wolfram.com/nb *)
- (* CreatedBy='Mathematica 8.0' *)
- (*CacheID: 234*)
- (* Internal cache information:
- NotebookFileLineBreakTest
- NotebookFileLineBreakTest
- NotebookDataPosition[ 157, 7]
- NotebookDataLength[ 18933, 598]
- NotebookOptionsPosition[ 18110, 565]
- NotebookOutlinePosition[ 18464, 581]
- CellTagsIndexPosition[ 18421, 578]
- WindowFrame->Normal*)
- (* Beginning of Notebook Content *)
- Notebook[{
- Cell[TextData[{
- "The \[OpenCurlyQuote]right trivialised\[CloseCurlyQuote] tangent of the \
- exponential map, ",
- Cell[BoxData[
- FormBox["dexpR", TraditionalForm]],
- FormatType->"TraditionalForm"],
- ", according to Iserles05an, formula 2.42, pg. 32 can be written as\n\t",
- Cell[BoxData[
- FormBox[GridBox[{
- {"\t"},
- {
- RowBox[{
- RowBox[{
- RowBox[{"g", "'"}],
- SuperscriptBox["g",
- RowBox[{"-", "1"}]]}], "=",
- RowBox[{
- SubscriptBox["dexpR", "\[Omega]"], "(",
- RowBox[{"\[Omega]", "'"}], ")"}]}]}
- }], TraditionalForm]],
- FormatType->"TraditionalForm"],
- "\nwhere ",
- Cell[BoxData[
- FormBox[
- RowBox[{"g", "=",
- RowBox[{"exp", "(", "\[Omega]", ")"}]}], TraditionalForm]],
- FormatType->"TraditionalForm"],
- ", and ",
- Cell[BoxData[
- FormBox[
- RowBox[{
- RowBox[{"g", "'"}], "=",
- RowBox[{
- RowBox[{"exp", "'"}],
- RowBox[{"(", "\[Omega]", ")"}]}]}], TraditionalForm]],
- FormatType->"TraditionalForm"],
- ".\nCompare this to the left Jacobian matrix ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["J", "l"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- " in Chirikjian11book2, pg. 26, we see that ",
- Cell[BoxData[
- FormBox["dexpR", TraditionalForm]],
- FormatType->"TraditionalForm"],
- " and ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["J", "l"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- " are the same.\n\nHence, be careful, Iserles\[CloseCurlyQuote]s \
- \[OpenCurlyQuote]",
- StyleBox["right",
- FontWeight->"Bold"],
- " trivialised\[CloseCurlyQuote] tangent of the exponential map ",
- Cell[BoxData[
- FormBox["dexpR", TraditionalForm]],
- FormatType->"TraditionalForm"],
- " is in fact Chirikjian\[CloseCurlyQuote]s ",
- StyleBox["left",
- FontWeight->"Bold"],
- " Jacobian matrix ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["J", "l"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- "!!!\n\nWe want to compute the s \[OpenCurlyQuote]",
- StyleBox["left",
- FontWeight->"Bold"],
- " trivialised\[CloseCurlyQuote] tangent of the exponential map, ",
- Cell[BoxData[
- FormBox["dexpL", TraditionalForm]],
- FormatType->"TraditionalForm"],
- ", for SE2, hence, we need to use Chirikjian\[CloseCurlyQuote]s ",
- StyleBox["right",
- FontWeight->"Bold"],
- " Jacobian matrix ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["J", "r"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- " formula in Chirikjian11book2, pg. 36."
- }], "Text",
- CellChangeTimes->{{3.6279967389044943`*^9, 3.6279968865058002`*^9}, {
- 3.6279969695759087`*^9, 3.6279974871811028`*^9}, 3.62799757389325*^9}],
- Cell[BoxData[{
- RowBox[{"Clear", "[", "J", "]"}], "\[IndentingNewLine]",
- RowBox[{
- RowBox[{"J", "[", "\[Alpha]_", "]"}], ":=",
- RowBox[{"{",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "/", "\[Alpha]"}], ",",
- RowBox[{
- RowBox[{"(",
- RowBox[{"1", "-",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}], "/", "\[Alpha]"}],
- ",", " ",
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"\[Alpha]", " ",
- SubscriptBox["v", "1"]}], "-",
- SubscriptBox["v", "2"], "+",
- RowBox[{
- SubscriptBox["v", "2"],
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "-",
- RowBox[{
- SubscriptBox["v", "1"],
- RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], "/",
- SuperscriptBox["\[Alpha]", "2"]}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- RowBox[{
- RowBox[{"-",
- RowBox[{"(",
- RowBox[{"1", "-",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}], "/", "\[Alpha]"}],
- ",",
- RowBox[{
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "/", "\[Alpha]"}], ",", " ",
- RowBox[{
- RowBox[{"(",
- RowBox[{
- SubscriptBox["v", "1"], "+",
- RowBox[{"\[Alpha]", " ",
- SubscriptBox["v", "2"]}], "-",
- RowBox[{
- SubscriptBox["v", "1"],
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "-",
- RowBox[{
- SubscriptBox["v", "2"],
- RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], "/",
- SuperscriptBox["\[Alpha]", "2"]}]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]}]}], "Input",
- CellChangeTimes->{{3.627993817228732*^9, 3.6279939547434673`*^9}, {
- 3.627993986274671*^9, 3.6279940386007967`*^9}, {3.627995391081044*^9,
- 3.627995412846286*^9}, 3.6279954452391644`*^9, {3.627995531089571*^9,
- 3.6279955341932592`*^9}, {3.627996429604282*^9, 3.62799643077184*^9}}],
- Cell[CellGroupData[{
- Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{"Jinv", "[", "\[Alpha]_", "]"}], "=",
- RowBox[{"Inverse", "[",
- RowBox[{"J", "[", "\[Alpha]", "]"}], "]"}]}],
- "\[IndentingNewLine]"}]], "Input",
- CellChangeTimes->{
- 3.627995475343099*^9, {3.627995548533964*^9, 3.627995559455151*^9}, {
- 3.627996438504909*^9, 3.6279964431657553`*^9}}],
- Cell[BoxData[
- RowBox[{"{",
- RowBox[{
- RowBox[{"{",
- RowBox[{
- FractionBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}],
- RowBox[{"\[Alpha]", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]]}], ")"}]}]], ",",
- FractionBox[
- RowBox[{
- RowBox[{"-",
- FractionBox["1", "\[Alpha]"]}], "+",
- FractionBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "\[Alpha]"]}],
- RowBox[{
- FractionBox["1",
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]]}]], ",",
- FractionBox[
- RowBox[{
- FractionBox[
- SubscriptBox["v", "1"],
- SuperscriptBox["\[Alpha]", "3"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
- SubscriptBox["v", "1"]}],
- SuperscriptBox["\[Alpha]", "3"]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"], " ",
- SubscriptBox["v", "1"]}],
- SuperscriptBox["\[Alpha]", "3"]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
- SubscriptBox["v", "1"]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"], " ",
- SubscriptBox["v", "1"]}],
- SuperscriptBox["\[Alpha]", "3"]], "+",
- FractionBox[
- SubscriptBox["v", "2"],
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
- SubscriptBox["v", "2"]}],
- SuperscriptBox["\[Alpha]", "2"]]}],
- RowBox[{
- FractionBox["1",
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]]}]]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{
- FractionBox[
- RowBox[{
- FractionBox["1", "\[Alpha]"], "-",
- FractionBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "\[Alpha]"]}],
- RowBox[{
- FractionBox["1",
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]]}]], ",",
- FractionBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}],
- RowBox[{"\[Alpha]", " ",
- RowBox[{"(",
- RowBox[{
- FractionBox["1",
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]]}], ")"}]}]], ",",
- FractionBox[
- RowBox[{
- RowBox[{"-",
- FractionBox[
- SubscriptBox["v", "1"],
- SuperscriptBox["\[Alpha]", "2"]]}], "+",
- FractionBox[
- RowBox[{
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
- SubscriptBox["v", "1"]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SubscriptBox["v", "2"],
- SuperscriptBox["\[Alpha]", "3"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
- SubscriptBox["v", "2"]}],
- SuperscriptBox["\[Alpha]", "3"]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"], " ",
- SubscriptBox["v", "2"]}],
- SuperscriptBox["\[Alpha]", "3"]], "-",
- FractionBox[
- RowBox[{
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
- SubscriptBox["v", "2"]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- RowBox[{
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"], " ",
- SubscriptBox["v", "2"]}],
- SuperscriptBox["\[Alpha]", "3"]]}],
- RowBox[{
- FractionBox["1",
- SuperscriptBox["\[Alpha]", "2"]], "-",
- FractionBox[
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]], "+",
- FractionBox[
- SuperscriptBox[
- RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
- SuperscriptBox["\[Alpha]", "2"]]}]]}], "}"}], ",",
- RowBox[{"{",
- RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]], "Output",
- CellChangeTimes->{
- 3.627995560030972*^9, {3.627996412919798*^9, 3.627996444306521*^9}}]
- }, Open ]],
- Cell[CellGroupData[{
- Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{"Jinv", "[", "\[Alpha]", "]"}], "//", "Simplify"}], "//",
- "MatrixForm"}]], "Input",
- CellChangeTimes->{{3.627993835637863*^9, 3.627993839233502*^9}, {
- 3.627994046108457*^9, 3.627994058781851*^9}, {3.627995546842499*^9,
- 3.6279955664940767`*^9}}],
- Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {
- RowBox[{
- FractionBox["1", "2"], " ", "\[Alpha]", " ",
- RowBox[{"Cot", "[",
- FractionBox["\[Alpha]", "2"], "]"}]}],
- RowBox[{"-",
- FractionBox["\[Alpha]", "2"]}],
- FractionBox[
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "2"}], "+",
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "+",
- RowBox[{"\[Alpha]", " ",
- RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
- SubscriptBox["v", "1"]}], "+",
- RowBox[{"\[Alpha]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}], " ",
- SubscriptBox["v", "2"]}]}],
- RowBox[{"2", " ", "\[Alpha]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}]]},
- {
- FractionBox["\[Alpha]", "2"],
- RowBox[{
- FractionBox["1", "2"], " ", "\[Alpha]", " ",
- RowBox[{"Cot", "[",
- FractionBox["\[Alpha]", "2"], "]"}]}],
- FractionBox[
- RowBox[{
- RowBox[{
- RowBox[{"(",
- RowBox[{"\[Alpha]", "-",
- RowBox[{"\[Alpha]", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
- SubscriptBox["v", "1"]}], "+",
- RowBox[{
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "2"}], "+",
- RowBox[{"2", " ",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "+",
- RowBox[{"\[Alpha]", " ",
- RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
- SubscriptBox["v", "2"]}]}],
- RowBox[{"2", " ", "\[Alpha]", " ",
- RowBox[{"(",
- RowBox[{
- RowBox[{"-", "1"}], "+",
- RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}]]},
- {"0", "0", "1"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output",
- CellChangeTimes->{
- 3.627993840513033*^9, {3.62799404156531*^9, 3.6279940592345743`*^9},
- 3.627995567356995*^9, 3.627996415136314*^9, 3.6279964490074778`*^9}]
- }, Open ]],
- Cell[TextData[{
- "In case ",
- Cell[BoxData[
- FormBox[
- RowBox[{"\[Alpha]", "=", "0"}], TraditionalForm]],
- FormatType->"TraditionalForm"],
- ", we compute the limits of ",
- Cell[BoxData[
- FormBox[
- SubscriptBox["J", "r"], TraditionalForm]],
- FormatType->"TraditionalForm"],
- " and ",
- Cell[BoxData[
- FormBox[
- SuperscriptBox[
- SubscriptBox["J", "r"],
- RowBox[{"-", "1"}]], TraditionalForm]],
- FormatType->"TraditionalForm"],
- " as follows"
- }], "Text",
- CellChangeTimes->{{3.627997495449997*^9, 3.627997524522543*^9}}],
- Cell[CellGroupData[{
- Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{"Limit", "[",
- RowBox[{
- RowBox[{"Jinv", "[", "\[Alpha]", "]"}], ",",
- RowBox[{"\[Alpha]", "\[Rule]", "0"}]}], "]"}], "//", "Simplify"}], "//",
- "MatrixForm"}]], "Input",
- CellChangeTimes->{{3.627995572179821*^9, 3.627995606373824*^9}}],
- Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"1", "0",
- FractionBox[
- SubscriptBox["v", "2"], "2"]},
- {"0", "1",
- RowBox[{"-",
- FractionBox[
- SubscriptBox["v", "1"], "2"]}]},
- {"0", "0", "1"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output",
- CellChangeTimes->{{3.627995585954463*^9, 3.627995606858135*^9},
- 3.6279964178087473`*^9, 3.6279964634008904`*^9}]
- }, Open ]],
- Cell[CellGroupData[{
- Cell[BoxData[
- RowBox[{
- RowBox[{
- RowBox[{"Limit", "[",
- RowBox[{
- RowBox[{"J", "[", "\[Alpha]", "]"}], ",",
- RowBox[{"\[Alpha]", "\[Rule]", "0"}]}], "]"}], "//", "Simplify"}], "//",
- "MatrixForm"}]], "Input",
- CellChangeTimes->{{3.6279956527343893`*^9, 3.627995660697241*^9}}],
- Cell[BoxData[
- TagBox[
- RowBox[{"(", "\[NoBreak]", GridBox[{
- {"1", "0",
- RowBox[{"-",
- FractionBox[
- SubscriptBox["v", "2"], "2"]}]},
- {"0", "1",
- FractionBox[
- SubscriptBox["v", "1"], "2"]},
- {"0", "0", "1"}
- },
- GridBoxAlignment->{
- "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
- "RowsIndexed" -> {}},
- GridBoxSpacings->{"Columns" -> {
- Offset[0.27999999999999997`], {
- Offset[0.7]},
- Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
- Offset[0.2], {
- Offset[0.4]},
- Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
- Function[BoxForm`e$,
- MatrixForm[BoxForm`e$]]]], "Output",
- CellChangeTimes->{{3.627995653969245*^9, 3.627995661346282*^9},
- 3.627996419383007*^9, 3.627996465705708*^9}]
- }, Open ]],
- Cell[BoxData[""], "Input",
- CellChangeTimes->{{3.627995694633294*^9, 3.627995695945466*^9}}]
- },
- WindowSize->{654, 852},
- WindowMargins->{{Automatic, 27}, {Automatic, 0}},
- FrontEndVersion->"8.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 5, \
- 2011)",
- StyleDefinitions->"Default.nb"
- ]
- (* End of Notebook Content *)
- (* Internal cache information *)
- (*CellTagsOutline
- CellTagsIndex->{}
- *)
- (*CellTagsIndex
- CellTagsIndex->{}
- *)
- (*NotebookFileOutline
- Notebook[{
- Cell[557, 20, 2591, 84, 197, "Text"],
- Cell[3151, 106, 2022, 56, 68, "Input"],
- Cell[CellGroupData[{
- Cell[5198, 166, 343, 9, 43, "Input"],
- Cell[5544, 177, 6519, 190, 290, "Output"]
- }, Open ]],
- Cell[CellGroupData[{
- Cell[12100, 372, 298, 7, 27, "Input"],
- Cell[12401, 381, 2665, 76, 99, "Output"]
- }, Open ]],
- Cell[15081, 460, 535, 20, 29, "Text"],
- Cell[CellGroupData[{
- Cell[15641, 484, 297, 8, 27, "Input"],
- Cell[15941, 494, 863, 25, 91, "Output"]
- }, Open ]],
- Cell[CellGroupData[{
- Cell[16841, 524, 296, 8, 27, "Input"],
- Cell[17140, 534, 859, 25, 91, "Output"]
- }, Open ]],
- Cell[18014, 562, 92, 1, 27, "Input"]
- }
- ]
- *)
- (* End of internal cache information *)
|