dexpInvL_SE2.nb 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. (* Content-type: application/vnd.wolfram.mathematica *)
  2. (*** Wolfram Notebook File ***)
  3. (* http://www.wolfram.com/nb *)
  4. (* CreatedBy='Mathematica 8.0' *)
  5. (*CacheID: 234*)
  6. (* Internal cache information:
  7. NotebookFileLineBreakTest
  8. NotebookFileLineBreakTest
  9. NotebookDataPosition[ 157, 7]
  10. NotebookDataLength[ 18933, 598]
  11. NotebookOptionsPosition[ 18110, 565]
  12. NotebookOutlinePosition[ 18464, 581]
  13. CellTagsIndexPosition[ 18421, 578]
  14. WindowFrame->Normal*)
  15. (* Beginning of Notebook Content *)
  16. Notebook[{
  17. Cell[TextData[{
  18. "The \[OpenCurlyQuote]right trivialised\[CloseCurlyQuote] tangent of the \
  19. exponential map, ",
  20. Cell[BoxData[
  21. FormBox["dexpR", TraditionalForm]],
  22. FormatType->"TraditionalForm"],
  23. ", according to Iserles05an, formula 2.42, pg. 32 can be written as\n\t",
  24. Cell[BoxData[
  25. FormBox[GridBox[{
  26. {"\t"},
  27. {
  28. RowBox[{
  29. RowBox[{
  30. RowBox[{"g", "'"}],
  31. SuperscriptBox["g",
  32. RowBox[{"-", "1"}]]}], "=",
  33. RowBox[{
  34. SubscriptBox["dexpR", "\[Omega]"], "(",
  35. RowBox[{"\[Omega]", "'"}], ")"}]}]}
  36. }], TraditionalForm]],
  37. FormatType->"TraditionalForm"],
  38. "\nwhere ",
  39. Cell[BoxData[
  40. FormBox[
  41. RowBox[{"g", "=",
  42. RowBox[{"exp", "(", "\[Omega]", ")"}]}], TraditionalForm]],
  43. FormatType->"TraditionalForm"],
  44. ", and ",
  45. Cell[BoxData[
  46. FormBox[
  47. RowBox[{
  48. RowBox[{"g", "'"}], "=",
  49. RowBox[{
  50. RowBox[{"exp", "'"}],
  51. RowBox[{"(", "\[Omega]", ")"}]}]}], TraditionalForm]],
  52. FormatType->"TraditionalForm"],
  53. ".\nCompare this to the left Jacobian matrix ",
  54. Cell[BoxData[
  55. FormBox[
  56. SubscriptBox["J", "l"], TraditionalForm]],
  57. FormatType->"TraditionalForm"],
  58. " in Chirikjian11book2, pg. 26, we see that ",
  59. Cell[BoxData[
  60. FormBox["dexpR", TraditionalForm]],
  61. FormatType->"TraditionalForm"],
  62. " and ",
  63. Cell[BoxData[
  64. FormBox[
  65. SubscriptBox["J", "l"], TraditionalForm]],
  66. FormatType->"TraditionalForm"],
  67. " are the same.\n\nHence, be careful, Iserles\[CloseCurlyQuote]s \
  68. \[OpenCurlyQuote]",
  69. StyleBox["right",
  70. FontWeight->"Bold"],
  71. " trivialised\[CloseCurlyQuote] tangent of the exponential map ",
  72. Cell[BoxData[
  73. FormBox["dexpR", TraditionalForm]],
  74. FormatType->"TraditionalForm"],
  75. " is in fact Chirikjian\[CloseCurlyQuote]s ",
  76. StyleBox["left",
  77. FontWeight->"Bold"],
  78. " Jacobian matrix ",
  79. Cell[BoxData[
  80. FormBox[
  81. SubscriptBox["J", "l"], TraditionalForm]],
  82. FormatType->"TraditionalForm"],
  83. "!!!\n\nWe want to compute the s \[OpenCurlyQuote]",
  84. StyleBox["left",
  85. FontWeight->"Bold"],
  86. " trivialised\[CloseCurlyQuote] tangent of the exponential map, ",
  87. Cell[BoxData[
  88. FormBox["dexpL", TraditionalForm]],
  89. FormatType->"TraditionalForm"],
  90. ", for SE2, hence, we need to use Chirikjian\[CloseCurlyQuote]s ",
  91. StyleBox["right",
  92. FontWeight->"Bold"],
  93. " Jacobian matrix ",
  94. Cell[BoxData[
  95. FormBox[
  96. SubscriptBox["J", "r"], TraditionalForm]],
  97. FormatType->"TraditionalForm"],
  98. " formula in Chirikjian11book2, pg. 36."
  99. }], "Text",
  100. CellChangeTimes->{{3.6279967389044943`*^9, 3.6279968865058002`*^9}, {
  101. 3.6279969695759087`*^9, 3.6279974871811028`*^9}, 3.62799757389325*^9}],
  102. Cell[BoxData[{
  103. RowBox[{"Clear", "[", "J", "]"}], "\[IndentingNewLine]",
  104. RowBox[{
  105. RowBox[{"J", "[", "\[Alpha]_", "]"}], ":=",
  106. RowBox[{"{",
  107. RowBox[{
  108. RowBox[{"{",
  109. RowBox[{
  110. RowBox[{
  111. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "/", "\[Alpha]"}], ",",
  112. RowBox[{
  113. RowBox[{"(",
  114. RowBox[{"1", "-",
  115. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}], "/", "\[Alpha]"}],
  116. ",", " ",
  117. RowBox[{
  118. RowBox[{"(",
  119. RowBox[{
  120. RowBox[{"\[Alpha]", " ",
  121. SubscriptBox["v", "1"]}], "-",
  122. SubscriptBox["v", "2"], "+",
  123. RowBox[{
  124. SubscriptBox["v", "2"],
  125. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "-",
  126. RowBox[{
  127. SubscriptBox["v", "1"],
  128. RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], "/",
  129. SuperscriptBox["\[Alpha]", "2"]}]}], "}"}], ",",
  130. RowBox[{"{",
  131. RowBox[{
  132. RowBox[{
  133. RowBox[{"-",
  134. RowBox[{"(",
  135. RowBox[{"1", "-",
  136. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}], "/", "\[Alpha]"}],
  137. ",",
  138. RowBox[{
  139. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "/", "\[Alpha]"}], ",", " ",
  140. RowBox[{
  141. RowBox[{"(",
  142. RowBox[{
  143. SubscriptBox["v", "1"], "+",
  144. RowBox[{"\[Alpha]", " ",
  145. SubscriptBox["v", "2"]}], "-",
  146. RowBox[{
  147. SubscriptBox["v", "1"],
  148. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "-",
  149. RowBox[{
  150. SubscriptBox["v", "2"],
  151. RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], "/",
  152. SuperscriptBox["\[Alpha]", "2"]}]}], "}"}], ",",
  153. RowBox[{"{",
  154. RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]}]}], "Input",
  155. CellChangeTimes->{{3.627993817228732*^9, 3.6279939547434673`*^9}, {
  156. 3.627993986274671*^9, 3.6279940386007967`*^9}, {3.627995391081044*^9,
  157. 3.627995412846286*^9}, 3.6279954452391644`*^9, {3.627995531089571*^9,
  158. 3.6279955341932592`*^9}, {3.627996429604282*^9, 3.62799643077184*^9}}],
  159. Cell[CellGroupData[{
  160. Cell[BoxData[
  161. RowBox[{
  162. RowBox[{
  163. RowBox[{"Jinv", "[", "\[Alpha]_", "]"}], "=",
  164. RowBox[{"Inverse", "[",
  165. RowBox[{"J", "[", "\[Alpha]", "]"}], "]"}]}],
  166. "\[IndentingNewLine]"}]], "Input",
  167. CellChangeTimes->{
  168. 3.627995475343099*^9, {3.627995548533964*^9, 3.627995559455151*^9}, {
  169. 3.627996438504909*^9, 3.6279964431657553`*^9}}],
  170. Cell[BoxData[
  171. RowBox[{"{",
  172. RowBox[{
  173. RowBox[{"{",
  174. RowBox[{
  175. FractionBox[
  176. RowBox[{"Sin", "[", "\[Alpha]", "]"}],
  177. RowBox[{"\[Alpha]", " ",
  178. RowBox[{"(",
  179. RowBox[{
  180. FractionBox["1",
  181. SuperscriptBox["\[Alpha]", "2"]], "-",
  182. FractionBox[
  183. RowBox[{"2", " ",
  184. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
  185. SuperscriptBox["\[Alpha]", "2"]], "+",
  186. FractionBox[
  187. SuperscriptBox[
  188. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
  189. SuperscriptBox["\[Alpha]", "2"]], "+",
  190. FractionBox[
  191. SuperscriptBox[
  192. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
  193. SuperscriptBox["\[Alpha]", "2"]]}], ")"}]}]], ",",
  194. FractionBox[
  195. RowBox[{
  196. RowBox[{"-",
  197. FractionBox["1", "\[Alpha]"]}], "+",
  198. FractionBox[
  199. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "\[Alpha]"]}],
  200. RowBox[{
  201. FractionBox["1",
  202. SuperscriptBox["\[Alpha]", "2"]], "-",
  203. FractionBox[
  204. RowBox[{"2", " ",
  205. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
  206. SuperscriptBox["\[Alpha]", "2"]], "+",
  207. FractionBox[
  208. SuperscriptBox[
  209. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
  210. SuperscriptBox["\[Alpha]", "2"]], "+",
  211. FractionBox[
  212. SuperscriptBox[
  213. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
  214. SuperscriptBox["\[Alpha]", "2"]]}]], ",",
  215. FractionBox[
  216. RowBox[{
  217. FractionBox[
  218. SubscriptBox["v", "1"],
  219. SuperscriptBox["\[Alpha]", "3"]], "-",
  220. FractionBox[
  221. RowBox[{"2", " ",
  222. RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
  223. SubscriptBox["v", "1"]}],
  224. SuperscriptBox["\[Alpha]", "3"]], "+",
  225. FractionBox[
  226. RowBox[{
  227. SuperscriptBox[
  228. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"], " ",
  229. SubscriptBox["v", "1"]}],
  230. SuperscriptBox["\[Alpha]", "3"]], "-",
  231. FractionBox[
  232. RowBox[{
  233. RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
  234. SubscriptBox["v", "1"]}],
  235. SuperscriptBox["\[Alpha]", "2"]], "+",
  236. FractionBox[
  237. RowBox[{
  238. SuperscriptBox[
  239. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"], " ",
  240. SubscriptBox["v", "1"]}],
  241. SuperscriptBox["\[Alpha]", "3"]], "+",
  242. FractionBox[
  243. SubscriptBox["v", "2"],
  244. SuperscriptBox["\[Alpha]", "2"]], "-",
  245. FractionBox[
  246. RowBox[{
  247. RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
  248. SubscriptBox["v", "2"]}],
  249. SuperscriptBox["\[Alpha]", "2"]]}],
  250. RowBox[{
  251. FractionBox["1",
  252. SuperscriptBox["\[Alpha]", "2"]], "-",
  253. FractionBox[
  254. RowBox[{"2", " ",
  255. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
  256. SuperscriptBox["\[Alpha]", "2"]], "+",
  257. FractionBox[
  258. SuperscriptBox[
  259. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
  260. SuperscriptBox["\[Alpha]", "2"]], "+",
  261. FractionBox[
  262. SuperscriptBox[
  263. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
  264. SuperscriptBox["\[Alpha]", "2"]]}]]}], "}"}], ",",
  265. RowBox[{"{",
  266. RowBox[{
  267. FractionBox[
  268. RowBox[{
  269. FractionBox["1", "\[Alpha]"], "-",
  270. FractionBox[
  271. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "\[Alpha]"]}],
  272. RowBox[{
  273. FractionBox["1",
  274. SuperscriptBox["\[Alpha]", "2"]], "-",
  275. FractionBox[
  276. RowBox[{"2", " ",
  277. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
  278. SuperscriptBox["\[Alpha]", "2"]], "+",
  279. FractionBox[
  280. SuperscriptBox[
  281. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
  282. SuperscriptBox["\[Alpha]", "2"]], "+",
  283. FractionBox[
  284. SuperscriptBox[
  285. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
  286. SuperscriptBox["\[Alpha]", "2"]]}]], ",",
  287. FractionBox[
  288. RowBox[{"Sin", "[", "\[Alpha]", "]"}],
  289. RowBox[{"\[Alpha]", " ",
  290. RowBox[{"(",
  291. RowBox[{
  292. FractionBox["1",
  293. SuperscriptBox["\[Alpha]", "2"]], "-",
  294. FractionBox[
  295. RowBox[{"2", " ",
  296. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
  297. SuperscriptBox["\[Alpha]", "2"]], "+",
  298. FractionBox[
  299. SuperscriptBox[
  300. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
  301. SuperscriptBox["\[Alpha]", "2"]], "+",
  302. FractionBox[
  303. SuperscriptBox[
  304. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
  305. SuperscriptBox["\[Alpha]", "2"]]}], ")"}]}]], ",",
  306. FractionBox[
  307. RowBox[{
  308. RowBox[{"-",
  309. FractionBox[
  310. SubscriptBox["v", "1"],
  311. SuperscriptBox["\[Alpha]", "2"]]}], "+",
  312. FractionBox[
  313. RowBox[{
  314. RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
  315. SubscriptBox["v", "1"]}],
  316. SuperscriptBox["\[Alpha]", "2"]], "+",
  317. FractionBox[
  318. SubscriptBox["v", "2"],
  319. SuperscriptBox["\[Alpha]", "3"]], "-",
  320. FractionBox[
  321. RowBox[{"2", " ",
  322. RowBox[{"Cos", "[", "\[Alpha]", "]"}], " ",
  323. SubscriptBox["v", "2"]}],
  324. SuperscriptBox["\[Alpha]", "3"]], "+",
  325. FractionBox[
  326. RowBox[{
  327. SuperscriptBox[
  328. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"], " ",
  329. SubscriptBox["v", "2"]}],
  330. SuperscriptBox["\[Alpha]", "3"]], "-",
  331. FractionBox[
  332. RowBox[{
  333. RowBox[{"Sin", "[", "\[Alpha]", "]"}], " ",
  334. SubscriptBox["v", "2"]}],
  335. SuperscriptBox["\[Alpha]", "2"]], "+",
  336. FractionBox[
  337. RowBox[{
  338. SuperscriptBox[
  339. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"], " ",
  340. SubscriptBox["v", "2"]}],
  341. SuperscriptBox["\[Alpha]", "3"]]}],
  342. RowBox[{
  343. FractionBox["1",
  344. SuperscriptBox["\[Alpha]", "2"]], "-",
  345. FractionBox[
  346. RowBox[{"2", " ",
  347. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}],
  348. SuperscriptBox["\[Alpha]", "2"]], "+",
  349. FractionBox[
  350. SuperscriptBox[
  351. RowBox[{"Cos", "[", "\[Alpha]", "]"}], "2"],
  352. SuperscriptBox["\[Alpha]", "2"]], "+",
  353. FractionBox[
  354. SuperscriptBox[
  355. RowBox[{"Sin", "[", "\[Alpha]", "]"}], "2"],
  356. SuperscriptBox["\[Alpha]", "2"]]}]]}], "}"}], ",",
  357. RowBox[{"{",
  358. RowBox[{"0", ",", "0", ",", "1"}], "}"}]}], "}"}]], "Output",
  359. CellChangeTimes->{
  360. 3.627995560030972*^9, {3.627996412919798*^9, 3.627996444306521*^9}}]
  361. }, Open ]],
  362. Cell[CellGroupData[{
  363. Cell[BoxData[
  364. RowBox[{
  365. RowBox[{
  366. RowBox[{"Jinv", "[", "\[Alpha]", "]"}], "//", "Simplify"}], "//",
  367. "MatrixForm"}]], "Input",
  368. CellChangeTimes->{{3.627993835637863*^9, 3.627993839233502*^9}, {
  369. 3.627994046108457*^9, 3.627994058781851*^9}, {3.627995546842499*^9,
  370. 3.6279955664940767`*^9}}],
  371. Cell[BoxData[
  372. TagBox[
  373. RowBox[{"(", "\[NoBreak]", GridBox[{
  374. {
  375. RowBox[{
  376. FractionBox["1", "2"], " ", "\[Alpha]", " ",
  377. RowBox[{"Cot", "[",
  378. FractionBox["\[Alpha]", "2"], "]"}]}],
  379. RowBox[{"-",
  380. FractionBox["\[Alpha]", "2"]}],
  381. FractionBox[
  382. RowBox[{
  383. RowBox[{
  384. RowBox[{"(",
  385. RowBox[{
  386. RowBox[{"-", "2"}], "+",
  387. RowBox[{"2", " ",
  388. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "+",
  389. RowBox[{"\[Alpha]", " ",
  390. RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
  391. SubscriptBox["v", "1"]}], "+",
  392. RowBox[{"\[Alpha]", " ",
  393. RowBox[{"(",
  394. RowBox[{
  395. RowBox[{"-", "1"}], "+",
  396. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}], " ",
  397. SubscriptBox["v", "2"]}]}],
  398. RowBox[{"2", " ", "\[Alpha]", " ",
  399. RowBox[{"(",
  400. RowBox[{
  401. RowBox[{"-", "1"}], "+",
  402. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}]]},
  403. {
  404. FractionBox["\[Alpha]", "2"],
  405. RowBox[{
  406. FractionBox["1", "2"], " ", "\[Alpha]", " ",
  407. RowBox[{"Cot", "[",
  408. FractionBox["\[Alpha]", "2"], "]"}]}],
  409. FractionBox[
  410. RowBox[{
  411. RowBox[{
  412. RowBox[{"(",
  413. RowBox[{"\[Alpha]", "-",
  414. RowBox[{"\[Alpha]", " ",
  415. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
  416. SubscriptBox["v", "1"]}], "+",
  417. RowBox[{
  418. RowBox[{"(",
  419. RowBox[{
  420. RowBox[{"-", "2"}], "+",
  421. RowBox[{"2", " ",
  422. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], "+",
  423. RowBox[{"\[Alpha]", " ",
  424. RowBox[{"Sin", "[", "\[Alpha]", "]"}]}]}], ")"}], " ",
  425. SubscriptBox["v", "2"]}]}],
  426. RowBox[{"2", " ", "\[Alpha]", " ",
  427. RowBox[{"(",
  428. RowBox[{
  429. RowBox[{"-", "1"}], "+",
  430. RowBox[{"Cos", "[", "\[Alpha]", "]"}]}], ")"}]}]]},
  431. {"0", "0", "1"}
  432. },
  433. GridBoxAlignment->{
  434. "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
  435. "RowsIndexed" -> {}},
  436. GridBoxSpacings->{"Columns" -> {
  437. Offset[0.27999999999999997`], {
  438. Offset[0.7]},
  439. Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
  440. Offset[0.2], {
  441. Offset[0.4]},
  442. Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  443. Function[BoxForm`e$,
  444. MatrixForm[BoxForm`e$]]]], "Output",
  445. CellChangeTimes->{
  446. 3.627993840513033*^9, {3.62799404156531*^9, 3.6279940592345743`*^9},
  447. 3.627995567356995*^9, 3.627996415136314*^9, 3.6279964490074778`*^9}]
  448. }, Open ]],
  449. Cell[TextData[{
  450. "In case ",
  451. Cell[BoxData[
  452. FormBox[
  453. RowBox[{"\[Alpha]", "=", "0"}], TraditionalForm]],
  454. FormatType->"TraditionalForm"],
  455. ", we compute the limits of ",
  456. Cell[BoxData[
  457. FormBox[
  458. SubscriptBox["J", "r"], TraditionalForm]],
  459. FormatType->"TraditionalForm"],
  460. " and ",
  461. Cell[BoxData[
  462. FormBox[
  463. SuperscriptBox[
  464. SubscriptBox["J", "r"],
  465. RowBox[{"-", "1"}]], TraditionalForm]],
  466. FormatType->"TraditionalForm"],
  467. " as follows"
  468. }], "Text",
  469. CellChangeTimes->{{3.627997495449997*^9, 3.627997524522543*^9}}],
  470. Cell[CellGroupData[{
  471. Cell[BoxData[
  472. RowBox[{
  473. RowBox[{
  474. RowBox[{"Limit", "[",
  475. RowBox[{
  476. RowBox[{"Jinv", "[", "\[Alpha]", "]"}], ",",
  477. RowBox[{"\[Alpha]", "\[Rule]", "0"}]}], "]"}], "//", "Simplify"}], "//",
  478. "MatrixForm"}]], "Input",
  479. CellChangeTimes->{{3.627995572179821*^9, 3.627995606373824*^9}}],
  480. Cell[BoxData[
  481. TagBox[
  482. RowBox[{"(", "\[NoBreak]", GridBox[{
  483. {"1", "0",
  484. FractionBox[
  485. SubscriptBox["v", "2"], "2"]},
  486. {"0", "1",
  487. RowBox[{"-",
  488. FractionBox[
  489. SubscriptBox["v", "1"], "2"]}]},
  490. {"0", "0", "1"}
  491. },
  492. GridBoxAlignment->{
  493. "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
  494. "RowsIndexed" -> {}},
  495. GridBoxSpacings->{"Columns" -> {
  496. Offset[0.27999999999999997`], {
  497. Offset[0.7]},
  498. Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
  499. Offset[0.2], {
  500. Offset[0.4]},
  501. Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  502. Function[BoxForm`e$,
  503. MatrixForm[BoxForm`e$]]]], "Output",
  504. CellChangeTimes->{{3.627995585954463*^9, 3.627995606858135*^9},
  505. 3.6279964178087473`*^9, 3.6279964634008904`*^9}]
  506. }, Open ]],
  507. Cell[CellGroupData[{
  508. Cell[BoxData[
  509. RowBox[{
  510. RowBox[{
  511. RowBox[{"Limit", "[",
  512. RowBox[{
  513. RowBox[{"J", "[", "\[Alpha]", "]"}], ",",
  514. RowBox[{"\[Alpha]", "\[Rule]", "0"}]}], "]"}], "//", "Simplify"}], "//",
  515. "MatrixForm"}]], "Input",
  516. CellChangeTimes->{{3.6279956527343893`*^9, 3.627995660697241*^9}}],
  517. Cell[BoxData[
  518. TagBox[
  519. RowBox[{"(", "\[NoBreak]", GridBox[{
  520. {"1", "0",
  521. RowBox[{"-",
  522. FractionBox[
  523. SubscriptBox["v", "2"], "2"]}]},
  524. {"0", "1",
  525. FractionBox[
  526. SubscriptBox["v", "1"], "2"]},
  527. {"0", "0", "1"}
  528. },
  529. GridBoxAlignment->{
  530. "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
  531. "RowsIndexed" -> {}},
  532. GridBoxSpacings->{"Columns" -> {
  533. Offset[0.27999999999999997`], {
  534. Offset[0.7]},
  535. Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> {
  536. Offset[0.2], {
  537. Offset[0.4]},
  538. Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}],
  539. Function[BoxForm`e$,
  540. MatrixForm[BoxForm`e$]]]], "Output",
  541. CellChangeTimes->{{3.627995653969245*^9, 3.627995661346282*^9},
  542. 3.627996419383007*^9, 3.627996465705708*^9}]
  543. }, Open ]],
  544. Cell[BoxData[""], "Input",
  545. CellChangeTimes->{{3.627995694633294*^9, 3.627995695945466*^9}}]
  546. },
  547. WindowSize->{654, 852},
  548. WindowMargins->{{Automatic, 27}, {Automatic, 0}},
  549. FrontEndVersion->"8.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 5, \
  550. 2011)",
  551. StyleDefinitions->"Default.nb"
  552. ]
  553. (* End of Notebook Content *)
  554. (* Internal cache information *)
  555. (*CellTagsOutline
  556. CellTagsIndex->{}
  557. *)
  558. (*CellTagsIndex
  559. CellTagsIndex->{}
  560. *)
  561. (*NotebookFileOutline
  562. Notebook[{
  563. Cell[557, 20, 2591, 84, 197, "Text"],
  564. Cell[3151, 106, 2022, 56, 68, "Input"],
  565. Cell[CellGroupData[{
  566. Cell[5198, 166, 343, 9, 43, "Input"],
  567. Cell[5544, 177, 6519, 190, 290, "Output"]
  568. }, Open ]],
  569. Cell[CellGroupData[{
  570. Cell[12100, 372, 298, 7, 27, "Input"],
  571. Cell[12401, 381, 2665, 76, 99, "Output"]
  572. }, Open ]],
  573. Cell[15081, 460, 535, 20, 29, "Text"],
  574. Cell[CellGroupData[{
  575. Cell[15641, 484, 297, 8, 27, "Input"],
  576. Cell[15941, 494, 863, 25, 91, "Output"]
  577. }, Open ]],
  578. Cell[CellGroupData[{
  579. Cell[16841, 524, 296, 8, 27, "Input"],
  580. Cell[17140, 534, 859, 25, 91, "Output"]
  581. }, Open ]],
  582. Cell[18014, 562, 92, 1, 27, "Input"]
  583. }
  584. ]
  585. *)
  586. (* End of internal cache information *)