123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2021 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- // keir@google.com (Keir Mierle)
- //
- // The Problem object is used to build and hold least squares problems.
- #ifndef CERES_PUBLIC_PROBLEM_H_
- #define CERES_PUBLIC_PROBLEM_H_
- #include <array>
- #include <cstddef>
- #include <map>
- #include <memory>
- #include <set>
- #include <vector>
- #include "ceres/context.h"
- #include "ceres/internal/disable_warnings.h"
- #include "ceres/internal/export.h"
- #include "ceres/internal/port.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- namespace ceres {
- class CostFunction;
- class EvaluationCallback;
- class LossFunction;
- class Manifold;
- class Solver;
- struct CRSMatrix;
- namespace internal {
- class Preprocessor;
- class ProblemImpl;
- class ParameterBlock;
- class ResidualBlock;
- } // namespace internal
- // A ResidualBlockId is an opaque handle clients can use to remove residual
- // blocks from a Problem after adding them.
- using ResidualBlockId = internal::ResidualBlock*;
- // A class to represent non-linear least squares problems. Such
- // problems have a cost function that is a sum of error terms (known
- // as "residuals"), where each residual is a function of some subset
- // of the parameters. The cost function takes the form
- //
- // N 1
- // SUM --- loss( || r_i1, r_i2,..., r_ik ||^2 ),
- // i=1 2
- //
- // where
- //
- // r_ij is residual number i, component j; the residual is a function of some
- // subset of the parameters x1...xk. For example, in a structure from
- // motion problem a residual might be the difference between a measured
- // point in an image and the reprojected position for the matching
- // camera, point pair. The residual would have two components, error in x
- // and error in y.
- //
- // loss(y) is the loss function; for example, squared error or Huber L1
- // loss. If loss(y) = y, then the cost function is non-robustified
- // least squares.
- //
- // This class is specifically designed to address the important subset of
- // "sparse" least squares problems, where each component of the residual depends
- // only on a small number number of parameters, even though the total number of
- // residuals and parameters may be very large. This property affords tremendous
- // gains in scale, allowing efficient solving of large problems that are
- // otherwise inaccessible.
- //
- // The canonical example of a sparse least squares problem is
- // "structure-from-motion" (SFM), where the parameters are points and cameras,
- // and residuals are reprojection errors. Typically a single residual will
- // depend only on 9 parameters (3 for the point, 6 for the camera).
- //
- // To create a least squares problem, use the AddResidualBlock() and
- // AddParameterBlock() methods, documented below. Here is an example least
- // squares problem containing 3 parameter blocks of sizes 3, 4 and 5
- // respectively and two residual terms of size 2 and 6:
- //
- // double x1[] = { 1.0, 2.0, 3.0 };
- // double x2[] = { 1.0, 2.0, 3.0, 5.0 };
- // double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };
- //
- // Problem problem;
- //
- // problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1);
- // problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x3);
- //
- // Please see cost_function.h for details of the CostFunction object.
- class CERES_EXPORT Problem {
- public:
- struct CERES_EXPORT Options {
- // These flags control whether the Problem object owns the CostFunctions,
- // LossFunctions, and Manifolds passed into the Problem.
- //
- // If set to TAKE_OWNERSHIP, then the problem object will delete the
- // corresponding object on destruction. The destructor is careful to delete
- // the pointers only once, since sharing objects is allowed.
- Ownership cost_function_ownership = TAKE_OWNERSHIP;
- Ownership loss_function_ownership = TAKE_OWNERSHIP;
- Ownership manifold_ownership = TAKE_OWNERSHIP;
- // If true, trades memory for faster RemoveResidualBlock() and
- // RemoveParameterBlock() operations.
- //
- // By default, RemoveParameterBlock() and RemoveResidualBlock() take time
- // proportional to the size of the entire problem. If you only ever remove
- // parameters or residuals from the problem occasionally, this might be
- // acceptable. However, if you have memory to spare, enable this option to
- // make RemoveParameterBlock() take time proportional to the number of
- // residual blocks that depend on it, and RemoveResidualBlock() take (on
- // average) constant time.
- //
- // The increase in memory usage is two-fold: an additional hash set per
- // parameter block containing all the residuals that depend on the parameter
- // block; and a hash set in the problem containing all residuals.
- bool enable_fast_removal = false;
- // By default, Ceres performs a variety of safety checks when constructing
- // the problem. There is a small but measurable performance penalty to these
- // checks, typically around 5% of construction time. If you are sure your
- // problem construction is correct, and 5% of the problem construction time
- // is truly an overhead you want to avoid, then you can set
- // disable_all_safety_checks to true.
- //
- // WARNING: Do not set this to true, unless you are absolutely sure of what
- // you are doing.
- bool disable_all_safety_checks = false;
- // A Ceres global context to use for solving this problem. This may help to
- // reduce computation time as Ceres can reuse expensive objects to create.
- // The context object can be nullptr, in which case Ceres may create one.
- //
- // Ceres does NOT take ownership of the pointer.
- Context* context = nullptr;
- // Using this callback interface, Ceres can notify you when it is about to
- // evaluate the residuals or jacobians. With the callback, you can share
- // computation between residual blocks by doing the shared computation in
- // EvaluationCallback::PrepareForEvaluation() before Ceres calls
- // CostFunction::Evaluate(). It also enables caching results between a pure
- // residual evaluation and a residual & jacobian evaluation.
- //
- // Problem DOES NOT take ownership of the callback.
- //
- // NOTE: Evaluation callbacks are incompatible with inner iterations. So
- // calling Solve with Solver::Options::use_inner_iterations = true on a
- // Problem with a non-null evaluation callback is an error.
- EvaluationCallback* evaluation_callback = nullptr;
- };
- // The default constructor is equivalent to the invocation
- // Problem(Problem::Options()).
- Problem();
- explicit Problem(const Options& options);
- Problem(Problem&&);
- Problem& operator=(Problem&&);
- Problem(const Problem&) = delete;
- Problem& operator=(const Problem&) = delete;
- ~Problem();
- // Add a residual block to the overall cost function. The cost function
- // carries with its information about the sizes of the parameter blocks it
- // expects. The function checks that these match the sizes of the parameter
- // blocks listed in parameter_blocks. The program aborts if a mismatch is
- // detected. loss_function can be nullptr, in which case the cost of the term
- // is just the squared norm of the residuals.
- //
- // The user has the option of explicitly adding the parameter blocks using
- // AddParameterBlock. This causes additional correctness checking; however,
- // AddResidualBlock implicitly adds the parameter blocks if they are not
- // present, so calling AddParameterBlock explicitly is not required.
- //
- // The Problem object by default takes ownership of the cost_function and
- // loss_function pointers (See Problem::Options to override this behaviour).
- // These objects remain live for the life of the Problem object. If the user
- // wishes to keep control over the destruction of these objects, then they can
- // do this by setting the corresponding enums in the Options struct.
- //
- // Note: Even though the Problem takes ownership of cost_function and
- // loss_function, it does not preclude the user from re-using them in another
- // residual block. The destructor takes care to call delete on each
- // cost_function or loss_function pointer only once, regardless of how many
- // residual blocks refer to them.
- //
- // Example usage:
- //
- // double x1[] = {1.0, 2.0, 3.0};
- // double x2[] = {1.0, 2.0, 5.0, 6.0};
- // double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};
- //
- // Problem problem;
- //
- // problem.AddResidualBlock(new MyUnaryCostFunction(...), nullptr, x1);
- // problem.AddResidualBlock(new MyBinaryCostFunction(...), nullptr, x2, x1);
- //
- // Add a residual block by listing the parameter block pointers directly
- // instead of wapping them in a container.
- template <typename... Ts>
- ResidualBlockId AddResidualBlock(CostFunction* cost_function,
- LossFunction* loss_function,
- double* x0,
- Ts*... xs) {
- const std::array<double*, sizeof...(Ts) + 1> parameter_blocks{{x0, xs...}};
- return AddResidualBlock(cost_function,
- loss_function,
- parameter_blocks.data(),
- static_cast<int>(parameter_blocks.size()));
- }
- // Add a residual block by providing a vector of parameter blocks.
- ResidualBlockId AddResidualBlock(
- CostFunction* cost_function,
- LossFunction* loss_function,
- const std::vector<double*>& parameter_blocks);
- // Add a residual block by providing a pointer to the parameter block array
- // and the number of parameter blocks.
- ResidualBlockId AddResidualBlock(CostFunction* cost_function,
- LossFunction* loss_function,
- double* const* const parameter_blocks,
- int num_parameter_blocks);
- // Add a parameter block with appropriate size to the problem. Repeated calls
- // with the same arguments are ignored. Repeated calls with the same double
- // pointer but a different size will result in a crash.
- void AddParameterBlock(double* values, int size);
- // Add a parameter block with appropriate size and Manifold to the
- // problem. It is okay for manifold to be nullptr.
- //
- // Repeated calls with the same arguments are ignored. Repeated calls
- // with the same double pointer but a different size results in a crash
- // (unless Solver::Options::disable_all_safety_checks is set to true).
- //
- // Repeated calls with the same double pointer and size but different Manifold
- // is equivalent to calling SetManifold(manifold), i.e., any previously
- // associated Manifold object will be replaced with the manifold.
- void AddParameterBlock(double* values, int size, Manifold* manifold);
- // Remove a parameter block from the problem. The Manifold of the parameter
- // block, if it exists, will persist until the deletion of the problem
- // (similar to cost/loss functions in residual block removal). Any residual
- // blocks that depend on the parameter are also removed, as described above
- // in RemoveResidualBlock().
- //
- // If Problem::Options::enable_fast_removal is true, then the removal is fast
- // (almost constant time). Otherwise, removing a parameter block will incur a
- // scan of the entire Problem object.
- //
- // WARNING: Removing a residual or parameter block will destroy the implicit
- // ordering, rendering the jacobian or residuals returned from the solver
- // uninterpretable. If you depend on the evaluated jacobian, do not use
- // remove! This may change in a future release.
- void RemoveParameterBlock(const double* values);
- // Remove a residual block from the problem. Any parameters that the residual
- // block depends on are not removed. The cost and loss functions for the
- // residual block will not get deleted immediately; won't happen until the
- // problem itself is deleted.
- //
- // WARNING: Removing a residual or parameter block will destroy the implicit
- // ordering, rendering the jacobian or residuals returned from the solver
- // uninterpretable. If you depend on the evaluated jacobian, do not use
- // remove! This may change in a future release.
- void RemoveResidualBlock(ResidualBlockId residual_block);
- // Hold the indicated parameter block constant during optimization.
- void SetParameterBlockConstant(const double* values);
- // Allow the indicated parameter block to vary during optimization.
- void SetParameterBlockVariable(double* values);
- // Returns true if a parameter block is set constant, and false otherwise. A
- // parameter block may be set constant in two ways: either by calling
- // SetParameterBlockConstant or by associating a Manifold with a zero
- // dimensional tangent space with it.
- bool IsParameterBlockConstant(const double* values) const;
- // Set the Manifold for the parameter block. Calling SetManifold with nullptr
- // will clear any previously set Manifold for the parameter block.
- //
- // Repeated calls will result in any previously associated Manifold object to
- // be replaced with the manifold.
- //
- // The manifold is owned by the Problem by default (See Problem::Options to
- // override this behaviour).
- //
- // It is acceptable to set the same Manifold for multiple parameter blocks.
- void SetManifold(double* values, Manifold* manifold);
- // Get the Manifold object associated with this parameter block.
- //
- // If there is no Manifold object associated then nullptr is returned.
- const Manifold* GetManifold(const double* values) const;
- // Returns true if a Manifold is associated with this parameter block, false
- // otherwise.
- bool HasManifold(const double* values) const;
- // Set the lower/upper bound for the parameter at position "index".
- void SetParameterLowerBound(double* values, int index, double lower_bound);
- void SetParameterUpperBound(double* values, int index, double upper_bound);
- // Get the lower/upper bound for the parameter at position "index". If the
- // parameter is not bounded by the user, then its lower bound is
- // -std::numeric_limits<double>::max() and upper bound is
- // std::numeric_limits<double>::max().
- double GetParameterLowerBound(const double* values, int index) const;
- double GetParameterUpperBound(const double* values, int index) const;
- // Number of parameter blocks in the problem. Always equals
- // parameter_blocks().size() and parameter_block_sizes().size().
- int NumParameterBlocks() const;
- // The size of the parameter vector obtained by summing over the sizes of all
- // the parameter blocks.
- int NumParameters() const;
- // Number of residual blocks in the problem. Always equals
- // residual_blocks().size().
- int NumResidualBlocks() const;
- // The size of the residual vector obtained by summing over the sizes of all
- // of the residual blocks.
- int NumResiduals() const;
- // The size of the parameter block.
- int ParameterBlockSize(const double* values) const;
- // The dimension of the tangent space of the Manifold for the parameter block.
- // If there is no Manifold associated with this parameter block, then
- // ParameterBlockTangentSize = ParameterBlockSize.
- int ParameterBlockTangentSize(const double* values) const;
- // Is the given parameter block present in this problem or not?
- bool HasParameterBlock(const double* values) const;
- // Fills the passed parameter_blocks vector with pointers to the parameter
- // blocks currently in the problem. After this call, parameter_block.size() ==
- // NumParameterBlocks.
- void GetParameterBlocks(std::vector<double*>* parameter_blocks) const;
- // Fills the passed residual_blocks vector with pointers to the residual
- // blocks currently in the problem. After this call, residual_blocks.size() ==
- // NumResidualBlocks.
- void GetResidualBlocks(std::vector<ResidualBlockId>* residual_blocks) const;
- // Get all the parameter blocks that depend on the given residual block.
- void GetParameterBlocksForResidualBlock(
- const ResidualBlockId residual_block,
- std::vector<double*>* parameter_blocks) const;
- // Get the CostFunction for the given residual block.
- const CostFunction* GetCostFunctionForResidualBlock(
- const ResidualBlockId residual_block) const;
- // Get the LossFunction for the given residual block. Returns nullptr
- // if no loss function is associated with this residual block.
- const LossFunction* GetLossFunctionForResidualBlock(
- const ResidualBlockId residual_block) const;
- // Get all the residual blocks that depend on the given parameter block.
- //
- // If Problem::Options::enable_fast_removal is true, then getting the residual
- // blocks is fast and depends only on the number of residual
- // blocks. Otherwise, getting the residual blocks for a parameter block will
- // incur a scan of the entire Problem object.
- void GetResidualBlocksForParameterBlock(
- const double* values,
- std::vector<ResidualBlockId>* residual_blocks) const;
- // Options struct to control Problem::Evaluate.
- struct EvaluateOptions {
- // The set of parameter blocks for which evaluation should be
- // performed. This vector determines the order that parameter blocks occur
- // in the gradient vector and in the columns of the jacobian matrix. If
- // parameter_blocks is empty, then it is assumed to be equal to vector
- // containing ALL the parameter blocks. Generally speaking the parameter
- // blocks will occur in the order in which they were added to the
- // problem. But, this may change if the user removes any parameter blocks
- // from the problem.
- //
- // NOTE: This vector should contain the same pointers as the ones used to
- // add parameter blocks to the Problem. These parameter block should NOT
- // point to new memory locations. Bad things will happen otherwise.
- std::vector<double*> parameter_blocks;
- // The set of residual blocks to evaluate. This vector determines the order
- // in which the residuals occur, and how the rows of the jacobian are
- // ordered. If residual_blocks is empty, then it is assumed to be equal to
- // the vector containing ALL the residual blocks. Generally speaking the
- // residual blocks will occur in the order in which they were added to the
- // problem. But, this may change if the user removes any residual blocks
- // from the problem.
- std::vector<ResidualBlockId> residual_blocks;
- // Even though the residual blocks in the problem may contain loss
- // functions, setting apply_loss_function to false will turn off the
- // application of the loss function to the output of the cost function. This
- // is of use for example if the user wishes to analyse the solution quality
- // by studying the distribution of residuals before and after the solve.
- bool apply_loss_function = true;
- int num_threads = 1;
- };
- // Evaluate Problem. Any of the output pointers can be nullptr. Which residual
- // blocks and parameter blocks are used is controlled by the EvaluateOptions
- // struct above.
- //
- // Note 1: The evaluation will use the values stored in the memory locations
- // pointed to by the parameter block pointers used at the time of the
- // construction of the problem. i.e.,
- //
- // Problem problem;
- // double x = 1;
- // problem.AddResidualBlock(new MyCostFunction, nullptr, &x);
- //
- // double cost = 0.0;
- // problem.Evaluate(Problem::EvaluateOptions(), &cost,
- // nullptr, nullptr, nullptr);
- //
- // The cost is evaluated at x = 1. If you wish to evaluate the problem at x =
- // 2, then
- //
- // x = 2;
- // problem.Evaluate(Problem::EvaluateOptions(), &cost,
- // nullptr, nullptr, nullptr);
- //
- // is the way to do so.
- //
- // Note 2: If no Manifolds are used, then the size of the gradient vector (and
- // the number of columns in the jacobian) is the sum of the sizes of all the
- // parameter blocks. If a parameter block has a Manifold, then it contributes
- // "TangentSize" entries to the gradient vector (and the number of columns in
- // the jacobian).
- //
- // Note 3: This function cannot be called while the problem is being solved,
- // for example it cannot be called from an IterationCallback at the end of an
- // iteration during a solve.
- //
- // Note 4: If an EvaluationCallback is associated with the problem, then its
- // PrepareForEvaluation method will be called every time this method is called
- // with new_point = true.
- bool Evaluate(const EvaluateOptions& options,
- double* cost,
- std::vector<double>* residuals,
- std::vector<double>* gradient,
- CRSMatrix* jacobian);
- // Evaluates the residual block, storing the scalar cost in *cost, the
- // residual components in *residuals, and the jacobians between the parameters
- // and residuals in jacobians[i], in row-major order.
- //
- // If residuals is nullptr, the residuals are not computed.
- //
- // If jacobians is nullptr, no Jacobians are computed. If jacobians[i] is
- // nullptr, then the Jacobian for that parameter block is not computed.
- //
- // It is not okay to request the Jacobian w.r.t a parameter block that is
- // constant.
- //
- // The return value indicates the success or failure. Even if the function
- // returns false, the caller should expect the output memory locations to have
- // been modified.
- //
- // The returned cost and jacobians have had robustification and Manifold
- // applied already; for example, the jacobian for a 4-dimensional quaternion
- // parameter using the "QuaternionParameterization" is num_residuals by 3
- // instead of num_residuals by 4.
- //
- // apply_loss_function as the name implies allows the user to switch the
- // application of the loss function on and off.
- //
- // If an EvaluationCallback is associated with the problem, then its
- // PrepareForEvaluation method will be called every time this method is called
- // with new_point = true. This conservatively assumes that the user may have
- // changed the parameter values since the previous call to evaluate / solve.
- // For improved efficiency, and only if you know that the parameter values
- // have not changed between calls, see
- // EvaluateResidualBlockAssumingParametersUnchanged().
- bool EvaluateResidualBlock(ResidualBlockId residual_block_id,
- bool apply_loss_function,
- double* cost,
- double* residuals,
- double** jacobians) const;
- // Same as EvaluateResidualBlock except that if an EvaluationCallback is
- // associated with the problem, then its PrepareForEvaluation method will be
- // called every time this method is called with new_point = false.
- //
- // This means, if an EvaluationCallback is associated with the problem then it
- // is the user's responsibility to call PrepareForEvaluation before calling
- // this method if necessary, i.e. iff the parameter values have been changed
- // since the last call to evaluate / solve.'
- //
- // This is because, as the name implies, we assume that the parameter blocks
- // did not change since the last time PrepareForEvaluation was called (via
- // Solve, Evaluate or EvaluateResidualBlock).
- bool EvaluateResidualBlockAssumingParametersUnchanged(
- ResidualBlockId residual_block_id,
- bool apply_loss_function,
- double* cost,
- double* residuals,
- double** jacobians) const;
- // Returns reference to the options with which the Problem was constructed.
- const Options& options() const;
- // Returns pointer to Problem implementation
- internal::ProblemImpl* mutable_impl();
- private:
- std::unique_ptr<internal::ProblemImpl> impl_;
- };
- } // namespace ceres
- #include "ceres/internal/reenable_warnings.h"
- #endif // CERES_PUBLIC_PROBLEM_H_
|