123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- #include "inference.h"
- Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda)
- {
- modelPath = onnxModelPath;
- modelShape = modelInputShape;
- classesPath = classesTxtFile;
- cudaEnabled = runWithCuda;
- loadOnnxNetwork();
- // loadClassesFromFile(); The classes are hard-coded for this example
- }
- std::vector<Detection> Inference::runInference(const cv::Mat &input)
- {
- cv::Mat modelInput = input;
- if (letterBoxForSquare && modelShape.width == modelShape.height)
- modelInput = formatToSquare(modelInput);
- cv::Mat blob;
- cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false);
- net.setInput(blob);
- std::vector<cv::Mat> outputs;
- net.forward(outputs, net.getUnconnectedOutLayersNames());
- int rows = outputs[0].size[1];
- int dimensions = outputs[0].size[2];
- bool yolov8 = false;
- // yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c])
- // yolov8 has an output of shape (batchSize, 84, 8400) (Num classes + box[x,y,w,h])
- if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8)
- {
- yolov8 = true;
- rows = outputs[0].size[2];
- dimensions = outputs[0].size[1];
- outputs[0] = outputs[0].reshape(1, dimensions);
- cv::transpose(outputs[0], outputs[0]);
- }
- float *data = (float *)outputs[0].data;
- float x_factor = modelInput.cols / modelShape.width;
- float y_factor = modelInput.rows / modelShape.height;
- std::vector<int> class_ids;
- std::vector<float> confidences;
- std::vector<cv::Rect> boxes;
- for (int i = 0; i < rows; ++i)
- {
- if (yolov8)
- {
- float *classes_scores = data+4;
- cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
- cv::Point class_id;
- double maxClassScore;
- minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
- if (maxClassScore > modelScoreThreshold)
- {
- confidences.push_back(maxClassScore);
- class_ids.push_back(class_id.x);
- float x = data[0];
- float y = data[1];
- float w = data[2];
- float h = data[3];
- int left = int((x - 0.5 * w) * x_factor);
- int top = int((y - 0.5 * h) * y_factor);
- int width = int(w * x_factor);
- int height = int(h * y_factor);
- boxes.push_back(cv::Rect(left, top, width, height));
- }
- }
- else // yolov5
- {
- float confidence = data[4];
- if (confidence >= modelConfidenceThreshold)
- {
- float *classes_scores = data+5;
- cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores);
- cv::Point class_id;
- double max_class_score;
- minMaxLoc(scores, 0, &max_class_score, 0, &class_id);
- if (max_class_score > modelScoreThreshold)
- {
- confidences.push_back(confidence);
- class_ids.push_back(class_id.x);
- float x = data[0];
- float y = data[1];
- float w = data[2];
- float h = data[3];
- int left = int((x - 0.5 * w) * x_factor);
- int top = int((y - 0.5 * h) * y_factor);
- int width = int(w * x_factor);
- int height = int(h * y_factor);
- boxes.push_back(cv::Rect(left, top, width, height));
- }
- }
- }
- data += dimensions;
- }
- std::vector<int> nms_result;
- cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result);
- std::vector<Detection> detections{};
- for (unsigned long i = 0; i < nms_result.size(); ++i)
- {
- int idx = nms_result[i];
- Detection result;
- result.class_id = class_ids[idx];
- result.confidence = confidences[idx];
- std::random_device rd;
- std::mt19937 gen(rd());
- std::uniform_int_distribution<int> dis(100, 255);
- result.color = cv::Scalar(dis(gen),
- dis(gen),
- dis(gen));
- result.className = classes[result.class_id];
- result.box = boxes[idx];
- detections.push_back(result);
- }
- return detections;
- }
- void Inference::loadClassesFromFile()
- {
- std::ifstream inputFile(classesPath);
- if (inputFile.is_open())
- {
- std::string classLine;
- while (std::getline(inputFile, classLine))
- classes.push_back(classLine);
- inputFile.close();
- }
- }
- void Inference::loadOnnxNetwork()
- {
- net = cv::dnn::readNetFromONNX(modelPath);
- if (cudaEnabled)
- {
- net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
- net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
- }
- else
- {
- net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV);
- net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
- }
- }
- cv::Mat Inference::formatToSquare(const cv::Mat &source)
- {
- int col = source.cols;
- int row = source.rows;
- int _max = MAX(col, row);
- cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3);
- source.copyTo(result(cv::Rect(0, 0, col, row)));
- return result;
- }
|