#include "inference.h" Inference::Inference(const std::string &onnxModelPath, const cv::Size &modelInputShape, const std::string &classesTxtFile, const bool &runWithCuda) { modelPath = onnxModelPath; modelShape = modelInputShape; classesPath = classesTxtFile; cudaEnabled = runWithCuda; loadOnnxNetwork(); // loadClassesFromFile(); The classes are hard-coded for this example } std::vector Inference::runInference(const cv::Mat &input) { cv::Mat modelInput = input; if (letterBoxForSquare && modelShape.width == modelShape.height) modelInput = formatToSquare(modelInput); cv::Mat blob; cv::dnn::blobFromImage(modelInput, blob, 1.0/255.0, modelShape, cv::Scalar(), true, false); net.setInput(blob); std::vector outputs; net.forward(outputs, net.getUnconnectedOutLayersNames()); int rows = outputs[0].size[1]; int dimensions = outputs[0].size[2]; bool yolov8 = false; // yolov5 has an output of shape (batchSize, 25200, 85) (Num classes + box[x,y,w,h] + confidence[c]) // yolov8 has an output of shape (batchSize, 84, 8400) (Num classes + box[x,y,w,h]) if (dimensions > rows) // Check if the shape[2] is more than shape[1] (yolov8) { yolov8 = true; rows = outputs[0].size[2]; dimensions = outputs[0].size[1]; outputs[0] = outputs[0].reshape(1, dimensions); cv::transpose(outputs[0], outputs[0]); } float *data = (float *)outputs[0].data; float x_factor = modelInput.cols / modelShape.width; float y_factor = modelInput.rows / modelShape.height; std::vector class_ids; std::vector confidences; std::vector boxes; for (int i = 0; i < rows; ++i) { if (yolov8) { float *classes_scores = data+4; cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores); cv::Point class_id; double maxClassScore; minMaxLoc(scores, 0, &maxClassScore, 0, &class_id); if (maxClassScore > modelScoreThreshold) { confidences.push_back(maxClassScore); class_ids.push_back(class_id.x); float x = data[0]; float y = data[1]; float w = data[2]; float h = data[3]; int left = int((x - 0.5 * w) * x_factor); int top = int((y - 0.5 * h) * y_factor); int width = int(w * x_factor); int height = int(h * y_factor); boxes.push_back(cv::Rect(left, top, width, height)); } } else // yolov5 { float confidence = data[4]; if (confidence >= modelConfidenceThreshold) { float *classes_scores = data+5; cv::Mat scores(1, classes.size(), CV_32FC1, classes_scores); cv::Point class_id; double max_class_score; minMaxLoc(scores, 0, &max_class_score, 0, &class_id); if (max_class_score > modelScoreThreshold) { confidences.push_back(confidence); class_ids.push_back(class_id.x); float x = data[0]; float y = data[1]; float w = data[2]; float h = data[3]; int left = int((x - 0.5 * w) * x_factor); int top = int((y - 0.5 * h) * y_factor); int width = int(w * x_factor); int height = int(h * y_factor); boxes.push_back(cv::Rect(left, top, width, height)); } } } data += dimensions; } std::vector nms_result; cv::dnn::NMSBoxes(boxes, confidences, modelScoreThreshold, modelNMSThreshold, nms_result); std::vector detections{}; for (unsigned long i = 0; i < nms_result.size(); ++i) { int idx = nms_result[i]; Detection result; result.class_id = class_ids[idx]; result.confidence = confidences[idx]; std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution dis(100, 255); result.color = cv::Scalar(dis(gen), dis(gen), dis(gen)); result.className = classes[result.class_id]; result.box = boxes[idx]; detections.push_back(result); } return detections; } void Inference::loadClassesFromFile() { std::ifstream inputFile(classesPath); if (inputFile.is_open()) { std::string classLine; while (std::getline(inputFile, classLine)) classes.push_back(classLine); inputFile.close(); } } void Inference::loadOnnxNetwork() { net = cv::dnn::readNetFromONNX(modelPath); if (cudaEnabled) { net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); } else { net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV); net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); } } cv::Mat Inference::formatToSquare(const cv::Mat &source) { int col = source.cols; int row = source.rows; int _max = MAX(col, row); cv::Mat result = cv::Mat::zeros(_max, _max, CV_8UC3); source.copyTo(result(cv::Rect(0, 0, col, row))); return result; }