123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- #include <iostream>
- #include <opencv2/core/core.hpp>
- #include <opencv2/features2d/features2d.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <opencv2/calib3d/calib3d.hpp>
- /*#include <Eigen/Core>
- #include <Eigen/Geometry>
- #include <g2o/core/base_vertex.h>
- #include <g2o/core/base_unary_edge.h>
- #include <g2o/core/block_solver.h>
- #include <g2o/core/optimization_algorithm_levenberg.h>
- #include <g2o/solvers/csparse/linear_solver_csparse.h>
- #include <g2o/types/sba/types_six_dof_expmap.h>*/
- #include <chrono>
- #include "pnp.h"
- #include "../Steger.h"
- using namespace std;
- using namespace cv;
- void find_feature_matches (
- const Mat& img_1, const Mat& img_2,
- std::vector<KeyPoint>& keypoints_1,
- std::vector<KeyPoint>& keypoints_2,
- std::vector< DMatch >& matches );
- void bundleAdjustment (
- const vector<Point3f> points_3d,
- const vector<Point2f> points_2d,
- const Mat& K,
- Mat& R, Mat& t
- );
- void verify_result(Mat R,Mat t,vector<Point2f> pts_2d,Mat K,vector<Point3f> pts_3d)
- {
- if(pts_2d.size()!=pts_3d.size())
- {
- printf(" pts_2d.size()!=pts_3d.size() \n");
- return;
- }
- Mat RINV=R.inv();
- for(int i=0;i<pts_3d.size();++i)
- {
- float dx=pts_3d[i].x+t.at<double>(0,0);
- float dy=pts_3d[i].y+t.at<double>(1,0);
- float dz=pts_3d[i].z+t.at<double>(2,0);
- float distance=sqrt(dx*dx+dy*dy+dz*dz);
- Point2d p1 = pixel2cam ( pts_2d[i], K );
- Point3f pose3d ( Point3f ( p1.x*distance, p1.y*distance, distance ) );
- Mat pose3d_m=Mat::zeros(3,1,R.type());
- pose3d_m.at<double>(0,0)=pose3d.x-t.at<double>(0,0);
- pose3d_m.at<double>(1,0)=pose3d.y-t.at<double>(1,0);
- pose3d_m.at<double>(2,0)=pose3d.z-t.at<double>(2,0);
- Mat o_pose=RINV*pose3d_m;
- printf(" cal :%f, %f, %f org:%f, %f, %f\n",o_pose.at<double>(0,0),o_pose.at<double>(1,0),o_pose.at<double>(2,0),
- pts_3d[i].x,pts_3d[i].y,pts_3d[i].z);
- }
- }
- void test_pnp(){
- Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
- cv::Mat R=(Mat_<double> ( 3,3 ) <<0.9979193252225095, -0.05138618904650328, 0.03894200717385427,
- 0.05033852907733768, 0.9983556574295407, 0.02742286944795593,
- -0.04028712992732941, -0.02540552801471822, 0.998865109165653);
- cv::Mat T=(Mat_<double>(3,1)<<-0.1255867099750184,-0.007363525258815341,0.0609992658867812);
- P3d2d p3d2d(K);
- p3d2d.R_=R;
- p3d2d.t_=T;
- cv::Mat src = cv::imread("../images/3.bmp", 0);
- cv::Mat image = src(cv::Rect(0, 0, src.cols, src.rows)).clone();
- for (int i = 0; i < image.rows; i++)
- {
- for (int j = 0; j < image.cols; j++)
- {
- if (image.at<uchar>(i, j) < 20)
- image.at<uchar>(i, j) = 0;
- }
- }
- cv::Mat out= cv::Mat::zeros(image.size(), CV_8UC1);
- CSteger steger;
- cv::GaussianBlur(image, image, cv::Size(3, 3), 3, 3);
- std::vector<cv::Point2d> points = steger.StripCenter(image);
- auto t1=std::chrono::steady_clock::now();
- p3d2d.execute(points);
- auto t2=std::chrono::steady_clock::now();
- double ms=std::chrono::duration<double,std::milli>(t2-t1).count();
- printf("points :%d time :%lf\n",points.size(),ms);
- }
- int main ( int argc, char** argv )
- {
- test_pnp();
- return 0;
- if ( argc != 4 )
- {
- cout<<"usage: pose_estimation_3d2d img1 img2 depth1"<<endl;
- return 1;
- }
- //-- 读取图像
- Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
- Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
- vector<KeyPoint> keypoints_1, keypoints_2;
- vector<DMatch> matches;
- find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
- cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
- // 建立3D点
- Mat d1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像
- Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
- vector<Point3f> pts_3d;
- vector<Point2f> pts_2d;
- for ( DMatch m:matches )
- {
- ushort d = d1.ptr<unsigned short> (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
- if ( d == 0 ) // bad depth
- continue;
- float dd = d/5000.0;
- Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
- pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) );
- pts_2d.push_back ( keypoints_2[m.trainIdx].pt );
- printf("image1 key 3d :%f, %f, %f image2 key 2d:%f, %f\n",p1.x*dd, p1.y*dd, dd ,
- keypoints_2[m.trainIdx].pt.x,keypoints_2[m.trainIdx].pt.y);
- }
- cout<<"3d-2d pairs: "<<pts_3d.size() <<endl;
- Mat r, t;
- solvePnP ( pts_3d, pts_2d, K, Mat(), r, t, false ); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
- Mat R;
- cv::Rodrigues ( r, R ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
- cout<<"R="<<endl<<R<<endl;
- cout<<"t="<<endl<<t<<endl;
- verify_result(R,t,pts_2d,K,pts_3d);
- cout<<"calling bundle adjustment"<<endl;
- //bundleAdjustment ( pts_3d, pts_2d, K, R, t );
- }
- void find_feature_matches ( const Mat& img_1, const Mat& img_2,
- std::vector<KeyPoint>& keypoints_1,
- std::vector<KeyPoint>& keypoints_2,
- std::vector< DMatch >& matches )
- {
- //-- 初始化
- Mat descriptors_1, descriptors_2;
- // used in OpenCV3
- Ptr<FeatureDetector> detector = ORB::create();
- Ptr<DescriptorExtractor> descriptor = ORB::create();
- // use this if you are in OpenCV2
- // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
- // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
- Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
- //-- 第一步:检测 Oriented FAST 角点位置
- detector->detect ( img_1,keypoints_1 );
- detector->detect ( img_2,keypoints_2 );
- //-- 第二步:根据角点位置计算 BRIEF 描述子
- descriptor->compute ( img_1, keypoints_1, descriptors_1 );
- descriptor->compute ( img_2, keypoints_2, descriptors_2 );
- //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
- vector<DMatch> match;
- // BFMatcher matcher ( NORM_HAMMING );
- matcher->match ( descriptors_1, descriptors_2, match );
- //-- 第四步:匹配点对筛选
- double min_dist=10000, max_dist=0;
- //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
- for ( int i = 0; i < descriptors_1.rows; i++ )
- {
- double dist = match[i].distance;
- if ( dist < min_dist ) min_dist = dist;
- if ( dist > max_dist ) max_dist = dist;
- }
- printf ( "-- Max dist : %f \n", max_dist );
- printf ( "-- Min dist : %f \n", min_dist );
- //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
- for ( int i = 0; i < descriptors_1.rows; i++ )
- {
- if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
- {
- matches.push_back ( match[i] );
- }
- }
- }
- void bundleAdjustment (
- const vector< Point3f > points_3d,
- const vector< Point2f > points_2d,
- const Mat& K,
- Mat& R, Mat& t )
- {
- // 初始化g2o
- /*typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3
- Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
- Block* solver_ptr = new Block ( linearSolver ); // 矩阵块求解器
- g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );
- g2o::SparseOptimizer optimizer;
- optimizer.setAlgorithm ( solver );
- // vertex
- g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
- Eigen::Matrix3d R_mat;
- R_mat <<
- R.at<double> ( 0,0 ), R.at<double> ( 0,1 ), R.at<double> ( 0,2 ),
- R.at<double> ( 1,0 ), R.at<double> ( 1,1 ), R.at<double> ( 1,2 ),
- R.at<double> ( 2,0 ), R.at<double> ( 2,1 ), R.at<double> ( 2,2 );
- pose->setId ( 0 );
- pose->setEstimate ( g2o::SE3Quat (
- R_mat,
- Eigen::Vector3d ( t.at<double> ( 0,0 ), t.at<double> ( 1,0 ), t.at<double> ( 2,0 ) )
- ) );
- optimizer.addVertex ( pose );
- int index = 1;
- for ( const Point3f p:points_3d ) // landmarks
- {
- g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
- point->setId ( index++ );
- point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
- point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容
- optimizer.addVertex ( point );
- }
- // parameter: camera intrinsics
- g2o::CameraParameters* camera = new g2o::CameraParameters (
- K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0
- );
- camera->setId ( 0 );
- optimizer.addParameter ( camera );
- // edges
- index = 1;
- for ( const Point2f p:points_2d )
- {
- g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
- edge->setId ( index );
- edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) );
- edge->setVertex ( 1, pose );
- edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) );
- edge->setParameterId ( 0,0 );
- edge->setInformation ( Eigen::Matrix2d::Identity() );
- optimizer.addEdge ( edge );
- index++;
- }
- chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
- optimizer.setVerbose ( true );
- optimizer.initializeOptimization();
- optimizer.optimize ( 100 );
- chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
- chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 );
- cout<<"optimization costs time: "<<time_used.count() <<" seconds."<<endl;
- cout<<endl<<"after optimization:"<<endl;
- cout<<"T="<<endl<<Eigen::Isometry3d ( pose->estimate() ).matrix() <<endl;*/
- }
|