IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

4861

Faster-LI1O: Lightweight Tightly Coupled
Lidar-Inertial Odometry Using Parallel Sparse
Incremental Voxels

Chunge Bai

Abstract—This letter presents an incremental voxel-based lidar-
inertial odometry (LIO) method for fast-tracking spinning and
solid-state lidar scans. To achieve the high tracking speed, we
neither use complicated tree-based structures to divide the spatial
point cloud nor the strict k nearest neighbor (k-NN) queries to
compute the point matching. Instead, we use the incremental voxels
(iVox) as our point cloud spatial data structure, which is modified
from the traditional voxels and supports incremental insertion
and parallel approximated k-NN queries. We propose the linear
iVox and PHC (Pseudo Hilbert Curve) iVox as two alternative
underlying structures in our algorithm. The experiments show that
the speed of iVox reaches 1000-2000 Hz per scan in solid-state lidars
and over 200 Hz for 32 lines spinning lidars only with a modern
CPU while still preserving the same level of accuracy.

Index Terms—Lidar-inertial odometry, SLAM, nearest
neighbor.
1. INTRODUCTION
IGH-SPEED point cloud registration and three-

dimensional reconstruction are critical blocks for
many manufactured products-from high-definition maps
(HD maps) [1]-[3] to autonomous vehicles [4], [5]. The
most common real-time lidar tracking methods like LOAM [6],
LeGO-LOAM [7] and BALM [8] require about 100 milliseconds
per iteration to process a lidar scan. Most of the conventional
spinning lidars provide multiple lines scans at this speed. As
optical technology develops, modern solid-state lidar sensors
like Livox and Cepton can provide dense point cloud scans in

Manuscriptreceived November 27,2021; accepted February 15,2022. Date of
publication February 22, 2022; date of current version March 4, 2022. This letter
was recommended for publication by Associate Editor J. Behley and Editor S.
Behnke upon evaluation of the reviewers’ comments. This work was supported
in part by Idriver+ Technologies Co. Ltd. Beijing, China, in part by Beijing
Municipal Science and Technology Program under Grant Z211100004221006
and in part by Beijing Nova Program under Grant Z201100006820047 from Bei-
jing Municipal Science and Technology Commission. (Corresponding author:
Xiang Gao.)

Chunge Bai is with the Department of Electronic Information and Engineer-
ing, Tsinghua University, Beijing, China, and also with the Idriver+ Technologies
Company Ltd., Beijing, China (e-mail: bcg971004 @ gmail.com).

Haogian Wang is with the Department of Electronic Information and Engi-
neering, Tsinghua University, Beijing 100084, China (e-mail: wanghaogian@
tsinghua.edu.cn).

Tao Xiao, Yajie Chen, Fang Zhang, and Xiang Gao are with the Idriver+
Technologies Company Ltd., Beijing, China (e-mail: xiaotao@idriverplus.
com; yajie.cw@outlook.com; zhangfang@idriverplus.com; gao.xiang.thu@
gmail.com).

Digital Object Identifier 10.1109/LRA.2022.3152830

, Tao Xiao, Yajie Chen, Haogian Wang

, Member, IEEE, Fang Zhang, and Xiang Gao

high frequencies like 100 Hz or even higher [9], [10]. It follows
that looking for a highly efficient lidar tracking method has
become an important research issue recently [11], [12]. For
many real robots or vehicles, LIO is not the only algorithm
running in the system. All the active modules must share the
computation resource. The system would be more robust if we
had a faster and more lightweight LIO. Besides, a faster LIO
approach can also be used as the front-end of offline mapping
systems to help reduce the computation time.

A lidar or vision-based SLAM system typically consists of
a real-time front-end for point cloud tracking and a back-end
for state optimization [13]-[15]. In a real-world lidar odometry
system, people will also fuse inertial and GPS measurements into
the state estimator in a loosely or tightly coupled form to make
the system more robust against short-time sensor failures [16],
[17]. It is not that easy to theoretically analyze the computation
cost of a whole complicated SLAM system. However, generally
speaking, for the front-end part (the LO/LIO module), the com-
putation time cost basically comes from the following aspects:

The chosen spatial data structure. Since traditional regis-
tration methods normally rely on k nearest neighbor (k-NN)
searching in point clouds, the registration efficiency can be
improved by exploiting faster k-NN data structures [19]. Some
of the data structures like R*-tree [20], B*-tree [21], designed for
unvarying spatial databases, are unsuitable for real-time LIO, as
LIO requires both fast construction and querying speed. More-
over, it would be even better to update the structure incrementally
since the point cloud is sequentially processed. Thus, voxels and
k-d trees (and their variants) [22], [23] are the better choices for
LO/LIO system. Of course, voxels and k-d trees still have their
limits. The voxels are easy to construct and delete almost in
constant time but are incapable of strict k-NN search or range
search. The k-d trees can provide strict k-NN search and range
search results but require extra efforts to swing and balance the
tree.

1) The state estimator formation: The pose estimator also
affects the computation cost of an LIO module. In modern VIO
or LIO systems, people tend to choose a compromise solution
between the conventional, single-frame Kalman filter and full
pose graph optimization/bundle adjustment, like sliding window
filters (SWF) [24], multiple state constraints Kalman filters
(MSCKF) [25], or iterated extended Kalman filters (IEKF) [26].
They both have the advantage of small computation costs

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-2114-3073
https://orcid.org/0000-0003-2792-8469
https://orcid.org/0000-0002-3070-9980
mailto:bcg971004@gmail.com
mailto:wanghaoqian@tsinghua.edu.cn
mailto:wanghaoqian@tsinghua.edu.cn
mailto:xiaotao@idriverplus.com
mailto:xiaotao@idriverplus.com
mailto:yajie.cw@outlook.com
mailto:zhangfang@idriverplus.com
mailto:gao.xiang.thu@gmail.com
mailto:gao.xiang.thu@gmail.com

4862

like filters and relatively sufficient accuracy like optimization
approaches.

2) The residual metric for matching: The residual metric to
match point cloud can also affect the efficiency of the lidar
system. In self-driving datasets, point-to-plane and point-to-line
models generally perform better than point-to-point models
because the lidar point clouds are sparse, and the same point is
not always observable. Furthermore, for feature-based systems
like [27], [28], the points will first be categorized into several se-
mantic classes (floors, poles, planes) to accelerate the matching
process. Those features reduce the number of registrated points,
but extra feature extraction time is unavoidable in such systems.

This letter presents a sparse, incremental voxel-based LIO
algorithm named Faster-LIO, which is basically developed from
the FastLIO2 [18]. The idea of using sparse voxels instead
of k-d tree (and their variants) in LIO is inspired by the fol-
lowing aspects: 1) Strict k-NN searches and range searches
are unnecessary for residual computation, especially for LIO
systems where the IMU measurement could obtain a roughly
accurate initial guess. The dominant advantage of the k-d tree
is its ability to provide strict k-NN and range/box search re-
sults via conditionally splitting the high dimensional space with
hyperplanes. However, in the worst case, the search algorithm
may dive into a very far-away branch to look for a potentially
existing nearest neighbor, which is not likely to be useful for
local plane coefficients estimation. In contrast, the search range
in voxel-based algorithms is limited to a preset value so that
discarding such neighbors does not affect most of the residuals.
2) The construction, iterating, balancing, removing of the k-d
tree nodes affect the efficiency of LIO, while voxels do not have
those problems. We use a conservative insertion and passive
delete strategy in voxels instead of mandatory updates in each
scan processing stage. Our contribution can be concluded as
follows:

1) We propose the sparse incremental voxels (iVox) to or-
ganize the point cloud instead of tree-like structures. We
show that iVox can achieve higher incremental update and
k-NN search speed than ik-d tree and other commonly
used data structures in LIO.

2) We propose two alternative underlying structures in iVox:
the linear iVox and iVox-PHC. The experiments show
that iVox-PHC has better computation efficiency when we
have more points in each voxel, and linear iVox performs
better if the numbers are small.

3) We use parallel k-NN search to build a tightly coupled LIO
system that reaches the speed of over 1500 Hz for solid-
state lidar and over 200 Hz for spinning lidar data (see
Fig. 1). We also provide an open-source implementation
for further studies’.

II. RELATED WORK

Several recent studies are focused on fast point cloud regis-
tration, among which also fuse inertial measurements to form

!'See http://github.com/gaoxiang 12/faster-lio for the open-source code.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

FPSof LIO in each sequence

Faster-LIO AMD
1750 Faster-LIO PHC AMD
FastLIO2 AMD

1500 = Faster-LIO Intel

mm Faster-LIO PHC Intel
1250 EEE FastLIO2 Intel

1000

Frame per second
o~
S
s 3

N
@
3

o

avial avia2 avia3 avia4 avia5 avia6 ncit1 nclt2  utbm1 utbm2

dataset

Fig. 1. The reconstructed point cloud of Faster-LIO from NCLT dataset and
the FPS compared with FastLIO2 [18], tested with AMD R7 5800X and Intel
Xeon Gold 5218.

an LIO system. We briefly review these works here and discuss
the difference between us.

LiTAMIN and LiTAMIN?2 [2], [29] propose a fast registration
method by reducing the number of registered points and intro-
ducing the symmetric KL-divergence into traditional ICP. They
are inspired by the famous NDT method, which first divides
the points into separate voxels and then performs a normal
distribution transform in each voxel. The letter reports about
500-1000 Hz frequency in the Kitti dataset with a 64-lines spin-
ning lidar. The speed is impressive but is primarily achieved by
reducing the number of involved points instead of using a more
compact data structure for neighbor searching. Besides, they
do not have an open-source implementation, and the reported
accuracy is slightly lower than the traditional method [30].

FastLIO and FastLIO2 [18], [26] are LIO systems that achieve
almost 100 Hz in large-scale scenarios. The incremental k-d
tree significantly reduces the tree update time, which is also
verified in our experiments. The Kalman gain computation in
the iterated EKF is further improved by employing the SMW
equalities to reduce the dimensions of the observation equations.
Nevertheless, we show that iVox is even faster than the ik-d tree
in FastLLIO2 while accomplishing the same level of accuracy.

For spinning lidars, there are also low-latency approaches
(LoLa-SLAM [31], LLOL [32]) that do not wait for a full
scan but use partial scan data to perform the registration. Such
acceleration is done by slicing the scans into several patterns,
and the number of registration points is also much smaller than
processing a full scan. Unfortunately, such methods are only
available for spinning lidar and are hard to expand into solid-state
lidars.

Deep learning registration approaches [33], [34] and GPU
accelerated registrations [30] are widely used choices in SLAM


http://github.com/gaoxiang12/faster-lio

BAI et al.: FASTER-LIO: LIGHTWEIGHT TIGHTLY COUPLED LIDAR-INERTIAL ODOMETRY USING PARALLEL SPARSE INCREMENTAL VOXELS

Hash map idi id: ids ids ids ids ids ids

4 h(xy.2) linear iVox
e ponk

Underlying
structure
iVox-PHC

o[{l°

Spatial hashing

@) o

IZ ’ '
Y k-NN search range E’
>

Fig. 2. 3D points in the global map within the same voxel are mapped to the
same 1-dimension hash index. There are two optional data structures within a
voxel: the linear iVox and iVox-PHC.

if the target platform is equipped with GPU. With the parallel
computing ability of GPU, most of the SLAM processes like
feature detection, feature matching, and even the whole map
can be stored within GPU memory and accelerated to a very
high speed. However, we do not compare our approach with
the GPU accelerated methods since the basic infrastructure is
different.

For general spatial data storage, voxel hashing is also a com-
mon approach to replacing hierarchical tree-like structures. [35]
employs hashed voxels for map management in visual SLAM
systems and [36] uses voxel hashing for volumetric 3D recon-
struction. Furthermore, this letter shows that the hashed voxels
can be used for nearest neighbor searching and incremental
mapping for LIO systems.

In the following sections, we first introduce the data structure
and the principles of the iVox and its PHC version. Then we
demonstrate comparative experiments between our approach
and the state-of-the-art LIO algorithms.

III. TVOX: INCREMENTAL SPARSE VOXELS

A. Data Structure of IVox

In iVox, the point cloud is first stored in sparse voxels whose
indices are hashed into an unordered map (see Fig. 2) by hash
function. Since the lidar point cloud is sparse, we are not using
any volumetric representations like TSDF [37] but a sparse hash
map that only stores those voxels having at least one point. The
hash index can be computed by any spatial hashing algorithms
like [38]. We use this hash function in our implementation:

T 1 T
pP= [pvayvpz] , V= g[pwapyapz]

?

id, = hash(v) = (vzng) xor (vyn,) xor (v;n.) mod N,
(1)
where p,,p,,p. are the coordinates of p € R3. The s is the
voxel size, n,, n,, n. are large prime numbers and NN is the size
of hash map, correspondingly.

The points within each voxel are either stored as a vector
or an underlying internal structure like PHC (see Section 1V),
which we call the linear iVox and iVox-PHC, correspondingly.
The k-NN search complexity within each voxel is hereby O(n)
or O(k) using linear iVox or iVox-PHC, where n is the number
of points inside the voxel and k is the order of the discrete PHC
curve. However, we will prevent inserting too many points into

4863

{ F
Nearby 6

Nearby 26 = Nearby 18 + 8

Nearby 18 = Nearby 6 + 12

Fig. 3. Find the nearby (6, 18, or 26) voxels of a given query point p (the
center of 3x3x3 cubes).

the same voxel at the incremental mapping step in LIO, so it
would not make much difference.

B. k-NN Search

The k-NN search is limited within a pre-defined range and
then divided into three steps. Given an iVox structure V' and a
query point P, we will: 1) Find the voxel index and nearby voxels
(from 6, 18, 26 voxels in our implementation, see Fig. 3), denoted
as S. 2) Iterate through each voxel in S and search at most K
neighbors in each voxel. 3) Merge the search results and select
the best K neighbors. Note that step 2 can be parallelized for
each voxel. However, since the algorithm is already parallelized
at the point cloud level, it is unnecessary to perform a parallel
search through each voxel here. The k-NN search in iVox is easy,
effective, but not strict compared with tree-like algorithms, yet
sufficient for LIO applications.

C. Incremental Mapping

The incremental mapping of iVox has two aspects: incremen-
tal addition and deletion.

The addition is straightforward, which is done by inserting
new points and creating new voxels if necessary. To avoid too
many points accumulating in one voxel, we leave out unneces-
sary point insertions via a VoxelGrid-like filter in the same way
as FastLIO2. Since we have already computed the voxel indices
of the nearest neighbors, we will not insert the current point
if any of its neighbors is closer to the center of the voxel grid
than itself. The leaf size of the filter is the key parameter that
tunes the trade-off between accuracy and speed. A larger leaf
size prevents too many insertions into one voxel at the cost of
k-NN accuracy. In our experience, a leaf size of 0.5 m generally
works well in most datasets.

The incremental deletion is different from the k-d tree struc-
ture since traversing through the whole voxel hash map is too
expensive. So, instead of actively deleting the points outside of
the current FoV in the spatial window, we use a least recently
used cache (LRU cache) strategy in the time window to maintain
the local map (see Fig. 4). Alongside the voxel hash map, we also
record the recently visited voxel queue and establish a maximum
size. If the number of voxels exceeds the maximum value, we
will eliminate the old voxels in memory because insertion and
deletion are O(1) in a hash map and very computationally cheap
for real-time LIO algorithms.



4864

. Lidar range

o
el o
o Old points

Fig. 4. Update the iVox with LRU cache. Move the newly created voxels and
the newly used voxels back, and delete those that have not been used for a fixed

period.
p= ?{Zexp[wil[log2 &]]]
=

search range

Hash map

WRUcache [T T [ [ T T T 1]

Not recently used, removed New map points

k-NN with k=2 []

>0O00

Fig. 5.

k-NN search of iVox-PHC.

IV. IVox-PHC
A. The Underlying Structure of iVox-PHC

IVox-PHC is another implementation of iVox, which replaces
the linear layout inside of each voxel with a pseudo-Hilbert
curve (PHC). Although we prevent inserting too many points
into the same voxel in the LIO pipeline, the performance of
the k-NN search will still decrease linearly as the number of
points grows. Space-filling curves like PHC are maps from a low
dimensional space into a high dimensional space while keeping
the locality. Hence, they are suitable for finding approximate
nearest neighbors inside a voxel or in the whole point cloud [39],
[40].

In the implementation, we split a voxel into (2%)3 smaller
cubes, where K is a configurable PHC order. For example, we
use K = 6 while it can be determined according to the physical
size of the voxel. The cubes are indexed from 0 to (2%)3 — 1
according to their positions in the PHC. Each cube stores the
centroid of all the points inside the cube. And the centroid will
be updated if an inserted point is located inside the range of the
cube.

B. k-NN Search of iVox-PHC

The k-NN search of iVox-PHC is slightly different from linear
iVox, where we can use the filling function H to calculate the
1-dimensional index of any given 3-d point (see Fig. 5). Suppose
the H function and its inverse are:

Ht)=xecR? H'(x)=teR, )

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

where ¢ is the one-dimensional index and x is the correspond-
ing cube where the point locates. Then the k-NN search of a
given point p, located in cube x, can be approximately solved
by counting k-th cubes in front and behind of H!(x). The
centroids of those cubes are returned as the k nearest neighbors.

If we want to add an extra range condition like limiting the
search size within 7, then the index search range p in PHC can
be calculated as:

K 3
p=28 (2 exp (ceil (log2 21 TS))) , 3)

where [, is the physical size of each voxel. In this case, the index
range will be both limited by min(k, p).

Note that the nearest neighbors in PHC are also approximated.
For two points A and B, consider the length [ 45 in PHC and
the euclidian distance d 4 5 in 3D space, we have:

dap <=lap <=V3*dap 4)

In an informally way, given a sufficiently large space, the nearest
neighbor we have found via PHC is measured up to /3 times
more distant than expected. Although this approximation brings
inaccuracy, it does not affect the registration in LIO, as demon-
strated in our later experiments.

C. Complexity of iVox and iVox-PHC

The time complexity comes from two aspects: incremental
map update and k-NN search.

1) Incremental Map Update: Incremental map update in-
volves the insertion and deletion of voxels in an LRU cache
and the insertion of points in the voxel. Since the LRU cache
is implemented by an unordered map with an inside double
linked list, the time complexity of node insertion and deletion is
O(1). Point insertion of i Vox-linear is also O(1), which is just an
element insertion in a linked list. For iVoxel-PHC, the points are
stored in a map indexed by the PHC index. Therefore, inserting
an element in an ordered array takes time complexity O(log(n)),
where n is the average number of points in a voxel. However,
n is generally small because the point cloud is downsampled,
which does not affect much in practice.

2) k-NN Search: For linear iVox, the time complexity of knn
is O(n) because it calculates the distance from the query point to
each point inside the voxel. For iVox-PHC, the time complexity
of knn is O(log(n)), as we only search the PHC index in a 1-D
ordered array. Moreover, for an iVox-PHC with a curve order
of #, the maximum number of points inside is 23*. In the worst
case, the time complexity of knn in iVox-PHC is O (log(23%)) =
O(k).

Please note that the complexity discussed here is defined by
the number of points within each voxel, not the whole point
cloud. Usually, tree-like methods tend to discuss the search
complexity of the whole cloud since the tree is built on it.
However, for voxel-based methods, the number of all the points
does not directly affect the search efficiency since the voxel
index can be calculated in constant complexity.



BAI et al.: FASTER-LIO: LIGHTWEIGHT TIGHTLY COUPLED LIDAR-INERTIAL ODOMETRY USING PARALLEL SPARSE INCREMENTAL VOXELS

V. EXPERIMENTS

This section presents a series of experiments evaluating the
accuracy and efficiency of the iVox module and the whole LIO
system. All the experiments are conducted in desktop computers
with AMD R7-5800X (8 cores, 3.8 G Hz) and Intel Xeon Gold
5128 (16 cores, 2.3 G Hz), denoted as “iVox AMD” and “iVox
Intel,” correspondingly. The accuracy experiments are also con-
ducted on laptops with an Intel i7-10750H CPU (6 cores, boost
5G Hz). Since our implementation performs heavy CPU par-
allelized computation, the number of cores, threads, and boost
frequency will dominate the algorithm’s overall performance.
We set the number of threads to the maximum thread of the
CPU in the following experiments.

The datasets used in experiments are selected from the public
dataset that provides IMU and lidar readings. We use the input
data from AVIA (solid-state lidar dataset from FastL.IO2 [18]),
NCLT [41], ULHK [42] and UTBM robocar dataset [43], nor-
mally denoted in lower letters in figures and tables. Since the
sequences of NCLT and UTBM are similar, we selected only part
of them to do the experiments. When comparing the performance
of the iVox data structure, we also use synthetic data for better
evaluation.

Faster-LIO is basically developed under FastLIO2 with some
code refactoring in the implementation. For example, we use
libtbb and C++ 17 for parallelization instead of the omp in
FastLIO2. We remove the unused logic (the feature extraction
part) and simplify the overall pipeline (remove the box delete
operation in map update, remove the cache for detected points,
adjust the point-to-plane residual computation, etc.). Please refer
to the code repository for more details.

A. Comparative Study of iVox, ik-d Tree, and the Others

First, we conduct experiments on the search and insert ef-
ficiency of iVox as a nearest neighbor data structure using
uniformly randomly generated data. We set a local map size
from 500 to 1000 k points within a 5x5x5 m cube and per-
form five nearest neighbors searches or insert 200 new points
into the existing map. The insert and k-NN search time will
increase as the number of points grows. We compare the linear
iVox and iVox-PHC with several widely used NN algorithms,
including ik-d tree [23], k-d tree FLANN (implemented in
the Point Cloud Library [44], denoted as flann here), R-tree
(implemented in Boost Geometry), Faiss-IVF [45], nmslib [46],
and nanoflann [47]. The results are shown in Fig. 6. The insert
time is plotted as solid lines, and the k-NN search time is dotted.
Note that some static algorithms need extra build/train time when
inserting new points, making the insert time longer than the
others.

The experiments show that in terms of inserting new points to
an existing structure, both iVox and ik-d tree perform well with
little time gain. IVox versions are slightly faster because we
only need to insert the new points into the hash map without any
tree expanding or balancing operations. Moreover, for the k-NN
search, iVox is much faster than others in small and medium map
sizes, but the time cost also grows more quickly. The FLANN
k-d tree is faster than ik-d tree, and both of them only grow a

4865

Insert Time w.r.t. Num of Points Knn Time w.r.t. Num of Points

—e— iVox-Linear

~e— Vox-PHC

—o— ik-dtree

10 { —&— flann

—e— R-tree

—o— faiss-IVF
nmslib hnws.

—e— nan

offann hnws

Time Usage (ms)
Time Usage (ms)

10! ._.—*.—../'/v ) C
107 vy
’ /I - iVox-Linear
100 b ! =@ Nox-
1072 + +
'/A' ~®- R-tree
~®- faiss-IVF
10 10 ’./‘\" nmslib hnws
o ~®- nanoflann hnws
10% 10¢ 10° 10° 10% 10% 10° 10°
Num of Points Num of Points
Fig. 6. Insert and k-NN query time with relation to the number of processed
points.
Processing time w.r.t. recall rate
10°
€ om
s
E
°
< 102 —e— iVox
g —o— ik-dtree
g —o— flann
107 —e— faiss-IVF
—&— nmslib hnws
—&— nanoflann hnws
30 40 50 60 70 80 90 100
Recall rate (%)
Fig. 7. Processing time with relation to recall percent curve of the compared

algorithms. Bottom-lower is better.

little even in the 1000 k points case. For these reasons, we would
prefer using a small and medium local map in LIO rather than a
large one with lots of points in each voxel.

We further plot the processing time w.r.t. recall rate for better
evaluation in Fig. 7. In the recall experiment, we use a 1000
points local map and the brute-force search as ground-truth
results. Then we adjust the parameter settings in each algorithm
to get the trade-off curves. The recall experiment shows that iVox
is faster in low recall rate scenarios, where the parameters are
adjusted as small voxel size or small nearby ranges. However, if
we want to know the exact neighbors, iVox may not be a good
choice since we need a large voxel size or nearby search range
to achieve a higher recall rate. Note that due to the system clock
accuracy, data points below the 10~3 ms are not strictly accurate
and may differ in each run.

B. Efficiency

The efficiency of LIO is evaluated by computing the average
processing time of each step and the average frames per second
(FPS) both on AMD and Intel platforms. In the bottom part of
Fig. 1, we show the FPS of the Faster-LIO and Faster-LIO PHC
compared with the original FastLIO2 (default parameter setting
with local map size L = 1000 m and downsample resolution
I = 0.5 m). It can be seen that Faster-LIO typically achieves 1.5
to 2 times FPS compared with the original FastLIO2, both in
solid-state lidar and spinning lidar datasets.

We further investigate the time cost of each algorithm step
in LIO in Fig. 8, Fig. 9, and Fig. 10. The main steps in LIO



4866

— FastLio2
~ iVox-Linear

25 — iVox-PHC
20
@
E
S 15
£
E
10
5
0 10000 20000 30000 40000 50000 60000 70000
Scan sequence
Fig. 8. Time usage w.r.t. the number of processed scans in a NCLT sequence.

The curve is smoothed in a 100 frames windows to reduce the statistical noises.

Time usage of each step

N EKF+ICP
s Undistortion
= Downsample

Preprocess
s Other

nclt_1 nclt.2 nclt_3 nclt.4 nclt_5 utbm_2 utbm_3 utbm_4 utbm_5 utbm_6 utbm_7 utbm_8 utbm_9
datasets

Fig. 9. Time usage in each step compared with FastLIO2. Left: linear Faster-
LIO, right: FastLIO2.

IEKF+ ICPAve. Time Usage

10°

avial avia2 avia3 aviad aviab aviab nclt1 nclt2
dataset

—o—

~®-— Faster-LIO AMD
Faster-LIO PHC AMD
FastLIO2 AMD

—8— Faster-LIO Intel

~®— Faster-LIO PHC Intel

—e— FastLIO2 Intel

Time Usage (ms)

utbom1  utbm2

Fig. 10.  Average IEKF processing time compared with FastLIO2.

include point cloud preprocess, downsampling, undistortion,
and the IEKF+ICP step. The modular time cost is plotted in
Fig. 7, which shows that the [IEKF+ICP, including the point cloud
residual computation, nearest neighbor searching, plane fitting,
and IEKF iteration, is the dominant part of the computation. For
this reason, we also plot the average IEKF+ICP processing time
in Fig. 10 using different iVox versions and CPU platforms.
Both of the FPS and IEKF efficiency experiments show
that 1Vox is significantly faster than ik-d tree, especially on a
slower platform where the IEKF computation time plays a more
important role (Intel v.s. AMD in our case). In the spinning
lidar datasets (NCLT and UTBM), iVox can save almost 40%

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 11. The ground-truth and estimated trajectories in NCLT and UTBM
dataset. Dashed lines represent the reference ground-truth obtained from RTK
and the colorful solid lines represent the estimated result. The color of the figure
denotes the error of the estimated trajectory: red-large, blue-small.

to 75% processing time in IEKF, and the overall FPS can be
increased by 200% to 320%. While in the AVIA dataset, the
number of scanned points in solid-state lidar is not so stable as
the spinning lidar, the computation time of the iVox is generally
shorter than ik-d tree, but not that obvious in sequences like
AVIALI or AVIA2.

Fig. 8 shows an experiment about the time cost w.r.t the
number of processed scans in a single sequence of NCLT, which
shows that our algorithm does not become slower as time grows
and is generally faster than FastL.IO2. Table [ demonstrates more
detailed results compared with state-of-the-art open-source LIO
systems like LIO-SAM and LiLi-OM, among which we also get
the fastest speed in most of the indicators.

C. Accuracy

This section compares the Faster-LIO against FastLIO2
and other state-of-the-art mapping systems, including LIO-
SAM [24] and LILI-OM [11]. Since Faster-LIO does not have
loop closure detection, we manually disable the loop closure
function in LIO-SAM and LiLi-OM while enabling all other
functions for a fair comparison. Besides, LIO-SAM only takes
9-axis IMU measurements as its input, so we skip the UTBM
dataset for LIO-SAM. The selected sequences all have good
ground-truth trajectories, normally collected by RTK sensors.

We use the absolute traditional pose error (APE) as the accu-
racy indicator for whole trajectories and a translational relative
pose error (RPE) error per 100 meters for drift evaluation. The
RPE is described in percents, just like the Kitti dataset. The
accuracy result is shown in Table II. It can be seen that we can
achieve comparable accuracy (typically 0.5-1.5% translational
drift) with FastL.IO2 at a much faster speed. Fig. 11 shows the
estimated trajectory in NCLT and UTBM dataset.

D. Integration Into Other SLAM Systems

We further demonstrate the capability of integrating iVox into
other lidar SLAM systems like LeGO-LOAM to save the incre-
mental mapping time. This section shows a time comparison for
processing one scan in the mapping module between our method
and the LeGO-LOAM, using datasets gathered from a ground
vehicle. We integrate the iVox into the mapping to search the
closest corner and surface points. The results in Table III show
that the iVox can be applied in other SLAM systems and achieves
lower time-consume.



TABLE I

TIME EVALUATION

BAI et al.: FASTER-LIO: LIGHTWEIGHT TIGHTLY COUPLED LIDAR-INERTIAL ODOMETRY USING PARALLEL SPARSE INCREMENTAL VOXELS

4867

Map ID Faster-LIO Faster-LIO PHC Spd inc? FastLIO2 LIO-SAM LiLi-OM
pre! (ms) opt (ms) pre (ms) opt (ms) pre (ms) opt (ms) pre (ms) opt (ms) pre (ms) opt (ms)
nclt_2 2.74 6.58 0.52 5.45 2.66 2.73 13.20 6.48 35.71 12.28 18.37
nclt_4 3.31 8.50 2.17 7.22 1.74 2.72 13.65 8.08 55.00 9.47 18.05
utbm_2 2.08 5.47 3.79 5.90 349 7.01 19.35 3 - 13.07 17.12
utbm_3 3.90 5.45 3.89 5.86 2.89 7.33 19.71 - - 15.66 17.79
utbm_4 3.90 5.54 3.85 5.99 2.86 7.08 19.97 - - 15.03 18.43
utbm_5 4.13 6.06 4.05 6.43 2.76 7.50 20.63 - - 13.96 17.43
ulhk_1 4.25 3.03 5.04 4.95 2.86 5.03 11.60 9.23 26.37 14.28 11.63
ulhk_2 5.10 3.84 5.12 4.16 2.34 5.21 11.58 9.36 28.00 14.71 11.89
liosam_1 2.32 5.75 2.29 6.53 1.52 2.09 10.17 4.80 43.67 - -

The “pre” in Faster-LIO/FastLIO2 denotes the preprocssing+undistortion+downsampling, and “opt” is the pose computation. But LIO-SAM and LiLi-OM use distributed
ROS nodes instead of sequentially processing the point clouds (and they are also keyframe-based approaches), so we separately calculate preprocessing and optimization for

each keyframe.
2Spd inc is short for speed increase against FastLIO2.

3

TABLE I
ACCURACY EVALUATION IN APE AND RPE PER 100 METERS

means the algorithm failed in this sequence due to large drift or lack of necessary input data.

Faster-LIO Faster-LIO PHC

FastLLIO2

LIO-SAMT LiLi-OM

MapID  ,pE (m) RPE (%) APE (m) RPE (%) APE(m) RPE (%) APE(m) RPE (%) APEm) RPE (%) Dist(&km)
nclt_2 0.94 0.36 .03 0.33 0.91 035 11 043 - - 0.26
nclt_4 1.32 0.35 1.23 0.33 0.82 0.35 0.38 0.37 . . 1.86

utbm_2 14.48 0.66 14.20 0.92 1273 0.71 - : 63.18 2.26 5.03

utbm_3 15.13 0.84 14.08 0.84 13.37 0.84 . . 82.07 1.20 4.99

utbm_4 14.84 1.01 14.42 1.01 14.60 1.18 . . 102.32 6.72 4.99

utbm_5 777 1.54 8.65 1.54 7.22 1.80 . . 48.01 1.32 5.00
ulhk_1 1.24 1.53 1.43 1.50 121 148 2.39 1.87 9.99 1.88 0.60
ulhk_2 1.14 1.68 1.08 1.69 111 1.62 1.53 1.46 10.34 141 0.62

liosam_1 1.78 0.59 0.89 0.67 0.83 0.75 0.83 0.65 . - 1.44

"We do not adjust the parameter settings for LIO-SAM and LiLi-OM, which may cause the older algorithms not perfectly running in newer datasets.

TABLE III
RUNTIME FOR STEPS IN MAPPING MODULE COMPARED WITH LEGO-LOAM

methods. Our experiments in public datasets show that

FasterLIO achieves over 1000 Hz for solid-state lidars and over
200 Hz for spinning lidars, significantly faster than most of the
present LIO systems while keeping the same level of accuracy.

Steps LeGO-LOAM (ms)  iVox (ms)
Extract key frames 21.85 0
Down sample 1.092 1.42
Optimization 46.33 49.768
Add key frames 0.127 0.513
Totol runtime 69.41 51.706

The original LeGO-LOAM search several keyframes within
a radius to construct a local map for each scan, where the iVox
version uses dynamic point management and incremental map
update strategy to avoid manually maintaining a point cloud
map. As shown in Table III, such kinds of strategies reduce
redundant information significantly and lead to a decreased time
complexity directly. However, the number of features is small
in LeGO-LOAM so that the NN search is not the bottleneck of
the whole pipeline. As a result, we do not significantly improve
the overall runtime like FasterLIO.

VI. CONCLUSION

This letter proposes a lightweight lidar-inertial odometry
algorithm called FasterLIO, which exploits the iVox and
iVox-PHC as its spatial data structure for nearest neighbor
search. The 1Vox and iVox-PHC represent the point cloud with
incremental sparse voxels for better search and update efficiency,
thus obtaining higher tracking speed than the traditional

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

REFERENCES

C. Le Gentil, T. Vidal-Calleja, and S. Huang, “IN2LAAMA: Inertial
LiDAR localization autocalibration and mapping,” IEEE Trans. Robot.,
vol. 37, no. 1, pp. 275-290, Feb. 2021.

M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “LiTAMIN: LiDAR-
based tracking and mapping by stabilized ICP for geometry approximation
with normal distributions,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
2020, pp. 5143-5150.

G. Xiang et al., “Fully automatic large-scale point cloud mapping for
low-speed self-driving vehicles in unstructured environments,” in Proc.
IEEE Intell. Veh. Symp., 2021, pp. 881-888.

P. Wei, X. Wang, and Y. Guo, “3D-LIDAR feature based localization for
autonomous vehicles,” in Proc. IEEE 16th Int. Conf. Automat. Sci. Eng.,
2020, pp. 288-293.

X.Zheng and J. Zhu, “Efficient LIDAR odometry for autonomous driving,”
IEEE Robot. Automat. Lett. vol. 6, no. 4, pp. 8458-8465, Oct. 2021,
arXiv:2104.10879.

J. Zhang and S. Singh, “LOAM: LiDAR odometry and mapping in real-
time,” in Robot.: Sci. Syst., vol. 2, no. 9, pp. 1-9, 2014.

T. Shan and B. Englot, “LeGO-LOAM: Lightweight and ground-optimized
LiDAR odometry and mapping on variable terrain,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2018, pp. 4758-4765.

Z. Liu and F. Zhang, “BALM: Bundle adjustment for LIDAR mapping,”
IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 3184-3191, Apr. 2021.

Z. Liu, F. Zhang, and X. Hong, “Low-cost retina-like robotic LiDARs
based on incommensurable scanning,” IEEE/ASME Trans. Mechatronics,
vol. 27, no. 1, pp. 58-68, Feb. 2022.

D. Wang, C. Watkins, and H. Xie, “MEMS mirrors for LIDAR: A review,”
Micromachines, vol. 11, no. 5, p. 456, 2020.



4868

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

K. Li, M. Li, and U. D. Hanebeck, “Towards high-performance solid-
state-LiDAR-inertial odometry and mapping,” IEEE Robot. Automat. Lett.,
vol. 6, no. 3, pp. 5167-5174, Jul. 2021.

D. V. Nam and K. Gon-Woo, “Solid-state LIDAR based-SLAM: A concise
review and application,” in Proc. IEEE Int. Conf. Big Data Smart Comput.,
2021, pp. 302-305.

P. Geneva, K. Eckenhoff, Y. Yang, and G. Huang, “Lips: LiDAR-inertial
3D plane SLAM,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2018,
pp. 123-130.

N. Rufus, U. K. R. Nair, A. S. B. Kumar, V. Madiraju, and K. M.
Krishna, “SROM: Simple real-time odometry and mapping using LiDAR
data for autonomous vehicles,” in Proc. IEEE Intell. Veh. Symp., 2020,
pp. 1867-1872.

W. Wang, J. Liu, C. Wang, B. Luo, and C. Zhang, “DV-LOAM: Direct
visual LiDAR odometry and mapping,” Remote Sens., vol. 13, no. 16,
2021, Art. no. 3340.

S. Hening, C. A. Ippolito, K. S. Krishnakumar, V. Stepanyan, and
M. Teodorescu, “3D LiDAR SLAM integration with GPS/INS for UAVs
in urban GPS-degraded environments,” in Proc. AIAA Inf. Syst.-AIAA
Infotech, Aerosp., 2017, Art. no. 0448.

C. Qian et al,, “An integrated GNSS/INS/LiDAR-SLAM positioning
method for highly accurate forest stem mapping,” Remote Sens., vol. 9,
no. 1, p. 3,2017.

W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “FAST-LIO2: Fast direct
LiDAR-inertial odometry,” IEEE Trans. Robot., 2022.

X. Huang, G. Mei, J. Zhang, and R. Abbas, “A comprehensive survey on
point cloud registration,” 2021, arXiv:2103.02690.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
An efficient and robust access method for points and rectangles,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 1990, pp. 322-331.

M. Dolatshah, A. Hadian, and B. Minaei-Bidgoli, “Ball*-tree: Efficient
spatial indexing for constrained nearest-neighbor search in metric spaces,”
2015, arXiv:1511.00628.

K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Voxelized GICP for fast
and accurate 3D point cloud registration,” in Proc. IEEE Int. Conf. Robot.
Automat., 2021, pp. 11054-11059.

Y. Cai, W. Xu, and F. Zhang, “ikd-Tree: An incremental KD tree for robotic
applications,” 2021, arXiv:2102.10808.

T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, and D. Rus,
“LIO-SAM: Tightly-coupled LiDAR inertial odometry via smoothing
and mapping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 5135-5142.

X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang, “LIC-Fusion: LiDAR-
inertial-camera odometry,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2019, pp. 5848-5854.

W. Xu and F. Zhang, “FAST-LIO: A fast, robust LiDAR-inertial odometry
package by tightly-coupled iterated Kalman filter,” IEEE Robot. Automat.
Lett., vol. 6, no. 2, pp. 3317-3324, Apr. 2021.

Y. Pan, P. Xiao, Y. He, Z. Shao, and Z. Li, “MULLS: Versatile LiDAR
SLAM via multi-metric linear least square,” in Proc. IEEE Int. Conf. Robot.
Automat.2021, pp. 11633-11640, arXiv:2102.03771.

S. Zhao, Z. Fang, H. Li, and S. Scherer, “A robust laser-inertial odometry
and mapping method for large-scale highway environments,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 1285-1292.

[29]

[30]

[31]

[32]
[33]
[34]
[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

M. Yokozuka, K. Koide, S. Oishi, and A. Banno, “LITAMIN2: Ul-
tra light LiDAR-based SLAM using geometric approximation applied
with KL-divergence,” in Proc. IEEE Int. Conf. Robot. Automat. 2021,
pp- 11619-11625, arXiv:2103.00784.

K. Koide, M. Yokozuka, S. Oishi, and A. Banno, “Globally consistent
3D LiDAR mapping with GPU-accelerated GICP matching cost factors,”
1IEEE Robot. Automat. Lett., vol. 6, no. 4, pp. 8591-8598, Oct. 2021.

M. Karimi, M. Oelsch, O. Stengel, E. Babaians, and E. Steinbach, “LoLa-
SLAM: Low-latency LiDAR SLAM using continuous scan slicing,” I[EEE
Robot. Automat. Lett., vol. 6, no. 2, pp. 2248-2255, Apr. 2021.

C. Qu, S. S. Shivakumar, W. Liu, and C. J. Taylor, “LLOL: Low-latency
odometry for spinning LiDARS,” 2021, arXiv:2110.01725.

Q. Li e al, “LO-Net: Deep real-time LiDAR odometry,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 8473-8482.
C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2514-2523.
M. Muglikar, Z. Zhang, and D. Scaramuzza, “Voxel map for visual SLAM,”
in Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 4181-4187.

M. Niefner, M. Zollhofer, S. Izadi, and M. Stamminger, “Real-time 3D
reconstruction at scale using voxel hashing,” ACM Trans. Graph., vol. 32,
no. 6, pp. 1-11, 2013.

K. Daun, S. Kohlbrecher, J. Sturm, and O. von Stryk, “Large scale 2D
laser SLAM using truncated signed distance functions,” in Proc. IEEE Int.
Symp. Saf., Secur., Rescue Robot., 2019, pp. 222-228.

M. Teschner, B. Heidelberger, M. Miiller, D. Pomerantes, and M. H. Gross,
“Optimized spatial hashing for collision detection of deformable objects,”
in Proc. Vis., Model., Visual. Conf., 2003, vol. 3, pp. 47-54.

H.-L. Chen and Y.-I. Chang, “Neighbor-finding based on space-filling
curves,” Inf. Syst., vol. 30, no. 3, pp. 205-226, 2005.

H.-L. Chen and Y.-I. Chang, “All-nearest-neighbors finding based on the
Hilbert curve,” Expert Syst. Appl., vol. 38, no. 6, pp. 7462-7475, 2011.
N. Carlevaris-Bianco, A. K. Ushani, and R. M. Eustice, “University of
Michigan North Campus long-term vision and LiDAR dataset,” Int. J.
Robot. Res., vol. 35, no. 9, pp. 1023-1035, 2015.

W. Wen et al., “UrbanLoco: A full sensor suite dataset for mapping and
localization in urban scenes,” in Proc. IEEE Int. Conf. Robot. Automat.,
2020, pp. 2310-2316.

Z. Yan, L. Sun, T. Krajnik, and Y. Ruichek, “EU long-term dataset with
multiple sensors for autonomous driving,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2020, pp. 10697-10704.

R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in
Proc. IEEE Int. Conf. Robot. Automat., 2011, pp. 1-4.

J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
GPUs,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535-547, Jul. 2017,
arXiv:1702.08734.

L. D. Boytsov, Y. Novak, A. Malkov, and E. Nyberg, “Off the beaten
path: Let’s replace term-based retrieval with k-NN search,” in Proc. 25th
ACM Int. Conf. Inf. Knowl. Manage., S. Mukhopadhyay, C. Zhai, E. F.
Bertino, J. Crestani, J. Mostafa Tang, L. Si, X. Zhou, Y. Chang, Y. Li,
and P. Sondhi, Eds., Indianapolis, IN, USA, ACM, 2016, pp. 1099-1108.
[Online]. Available: https://doi.org/10.1145/2983323.2983815

J. L. Blanco and P. K. Rai, “nanoflann: A C+ header-only fork of FLANN,
a library for Nearest Neighbor (NN) with KD-trees,” 2014. [Online].
Available: https://github.com/jlblancoc/nanoflann


https://doi.org/10.1145/2983323.2983815
https://github.com/jlblancoc/nanoflann


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


