123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727 |
- /// @file
- /// Similarity group Sim(2) - scaling, rotation and translation in 2d.
- #ifndef SOPHUS_SIM2_HPP
- #define SOPHUS_SIM2_HPP
- #include "rxso2.hpp"
- #include "sim_details.hpp"
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class Sim2;
- using Sim2d = Sim2<double>;
- using Sim2f = Sim2<float>;
- } // namespace Sophus
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options>
- struct traits<Sophus::Sim2<Scalar_, Options>> {
- using Scalar = Scalar_;
- using TranslationType = Sophus::Vector2<Scalar, Options>;
- using RxSO2Type = Sophus::RxSO2<Scalar, Options>;
- };
- template <class Scalar_, int Options>
- struct traits<Map<Sophus::Sim2<Scalar_>, Options>>
- : traits<Sophus::Sim2<Scalar_, Options>> {
- using Scalar = Scalar_;
- using TranslationType = Map<Sophus::Vector2<Scalar>, Options>;
- using RxSO2Type = Map<Sophus::RxSO2<Scalar>, Options>;
- };
- template <class Scalar_, int Options>
- struct traits<Map<Sophus::Sim2<Scalar_> const, Options>>
- : traits<Sophus::Sim2<Scalar_, Options> const> {
- using Scalar = Scalar_;
- using TranslationType = Map<Sophus::Vector2<Scalar> const, Options>;
- using RxSO2Type = Map<Sophus::RxSO2<Scalar> const, Options>;
- };
- } // namespace internal
- } // namespace Eigen
- namespace Sophus {
- /// Sim2 base type - implements Sim2 class but is storage agnostic.
- ///
- /// Sim(2) is the group of rotations and translation and scaling in 2d. It is
- /// the semi-direct product of R+xSO(2) and the 2d Euclidean vector space. The
- /// class is represented using a composition of RxSO2 for scaling plus
- /// rotation and a 2-vector for translation.
- ///
- /// Sim(2) is neither compact, nor a commutative group.
- ///
- /// See RxSO2 for more details of the scaling + rotation representation in 2d.
- ///
- template <class Derived>
- class Sim2Base {
- public:
- using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
- using TranslationType =
- typename Eigen::internal::traits<Derived>::TranslationType;
- using RxSO2Type = typename Eigen::internal::traits<Derived>::RxSO2Type;
- /// Degrees of freedom of manifold, number of dimensions in tangent space
- /// (two for translation, one for rotation and one for scaling).
- static int constexpr DoF = 4;
- /// Number of internal parameters used (2-tuple for complex number, two for
- /// translation).
- static int constexpr num_parameters = 4;
- /// Group transformations are 3x3 matrices.
- static int constexpr N = 3;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector2<Scalar>;
- using HomogeneousPoint = Vector3<Scalar>;
- using Line = ParametrizedLine2<Scalar>;
- using Tangent = Vector<Scalar, DoF>;
- using Adjoint = Matrix<Scalar, DoF, DoF>;
- /// For binary operations the return type is determined with the
- /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
- /// types, as well as other compatible scalar types such as Ceres::Jet and
- /// double scalars with SIM2 operations.
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename OtherDerived::Scalar>::ReturnType;
- template <typename OtherDerived>
- using Sim2Product = Sim2<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector2<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
- /// Adjoint transformation
- ///
- /// This function return the adjoint transformation ``Ad`` of the group
- /// element ``A`` such that for all ``x`` it holds that
- /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
- ///
- SOPHUS_FUNC Adjoint Adj() const {
- Adjoint res;
- res.setZero();
- res.template block<2, 2>(0, 0) = rxso2().matrix();
- res(0, 2) = translation()[1];
- res(1, 2) = -translation()[0];
- res.template block<2, 1>(0, 3) = -translation();
- res(2, 2) = Scalar(1);
- res(3, 3) = Scalar(1);
- return res;
- }
- /// Returns copy of instance casted to NewScalarType.
- ///
- template <class NewScalarType>
- SOPHUS_FUNC Sim2<NewScalarType> cast() const {
- return Sim2<NewScalarType>(rxso2().template cast<NewScalarType>(),
- translation().template cast<NewScalarType>());
- }
- /// Returns group inverse.
- ///
- SOPHUS_FUNC Sim2<Scalar> inverse() const {
- RxSO2<Scalar> invR = rxso2().inverse();
- return Sim2<Scalar>(invR, invR * (translation() * Scalar(-1)));
- }
- /// Logarithmic map
- ///
- /// Computes the logarithm, the inverse of the group exponential which maps
- /// element of the group (rigid body transformations) to elements of the
- /// tangent space (twist).
- ///
- /// To be specific, this function computes ``vee(logmat(.))`` with
- /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
- /// of Sim(2).
- ///
- SOPHUS_FUNC Tangent log() const {
- /// The derivation of the closed-form Sim(2) logarithm for is done
- /// analogously to the closed-form solution of the SE(2) logarithm, see
- /// J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices
- /// and logarithms of orthogonal matrices", IJRA 2002.
- /// https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf
- /// (Sec. 6., pp. 8)
- Tangent res;
- Vector2<Scalar> const theta_sigma = rxso2().log();
- Scalar const theta = theta_sigma[0];
- Scalar const sigma = theta_sigma[1];
- Matrix2<Scalar> const Omega = SO2<Scalar>::hat(theta);
- Matrix2<Scalar> const W_inv =
- details::calcWInv<Scalar, 2>(Omega, theta, sigma, scale());
- res.segment(0, 2) = W_inv * translation();
- res[2] = theta;
- res[3] = sigma;
- return res;
- }
- /// Returns 3x3 matrix representation of the instance.
- ///
- /// It has the following form:
- ///
- /// | s*R t |
- /// | o 1 |
- ///
- /// where ``R`` is a 2x2 rotation matrix, ``s`` a scale factor, ``t`` a
- /// translation 2-vector and ``o`` a 2-column vector of zeros.
- ///
- SOPHUS_FUNC Transformation matrix() const {
- Transformation homogenious_matrix;
- homogenious_matrix.template topLeftCorner<2, 3>() = matrix2x3();
- homogenious_matrix.row(2) =
- Matrix<Scalar, 3, 1>(Scalar(0), Scalar(0), Scalar(1));
- return homogenious_matrix;
- }
- /// Returns the significant first two rows of the matrix above.
- ///
- SOPHUS_FUNC Matrix<Scalar, 2, 3> matrix2x3() const {
- Matrix<Scalar, 2, 3> matrix;
- matrix.template topLeftCorner<2, 2>() = rxso2().matrix();
- matrix.col(2) = translation();
- return matrix;
- }
- /// Assignment operator.
- ///
- SOPHUS_FUNC Sim2Base& operator=(Sim2Base const& other) = default;
- /// Assignment-like operator from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC Sim2Base<Derived>& operator=(
- Sim2Base<OtherDerived> const& other) {
- rxso2() = other.rxso2();
- translation() = other.translation();
- return *this;
- }
- /// Group multiplication, which is rotation plus scaling concatenation.
- ///
- /// Note: That scaling is calculated with saturation. See RxSO2 for
- /// details.
- ///
- template <typename OtherDerived>
- SOPHUS_FUNC Sim2Product<OtherDerived> operator*(
- Sim2Base<OtherDerived> const& other) const {
- return Sim2Product<OtherDerived>(
- rxso2() * other.rxso2(), translation() + rxso2() * other.translation());
- }
- /// Group action on 2-points.
- ///
- /// This function rotates, scales and translates a two dimensional point
- /// ``p`` by the Sim(2) element ``(bar_sR_foo, t_bar)`` (= similarity
- /// transformation):
- ///
- /// ``p_bar = bar_sR_foo * p_foo + t_bar``.
- ///
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 2>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
- return rxso2() * p + translation();
- }
- /// Group action on homogeneous 2-points. See above for more details.
- ///
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 3>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- const PointProduct<HPointDerived> tp =
- rxso2() * p.template head<2>() + p(2) * translation();
- return HomogeneousPointProduct<HPointDerived>(tp(0), tp(1), p(2));
- }
- /// Group action on lines.
- ///
- /// This function rotates, scales and translates a parametrized line
- /// ``l(t) = o + t * d`` by the Sim(2) element:
- ///
- /// Origin ``o`` is rotated, scaled and translated
- /// Direction ``d`` is rotated
- ///
- SOPHUS_FUNC Line operator*(Line const& l) const {
- Line rotatedLine = rxso2() * l;
- return Line(rotatedLine.origin() + translation(), rotatedLine.direction());
- }
- /// Returns internal parameters of Sim(2).
- ///
- /// It returns (c[0], c[1], t[0], t[1]),
- /// with c being the complex number, t the translation 3-vector.
- ///
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
- Sophus::Vector<Scalar, num_parameters> p;
- p << rxso2().params(), translation();
- return p;
- }
- /// In-place group multiplication. This method is only valid if the return
- /// type of the multiplication is compatible with this SO2's Scalar type.
- ///
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC Sim2Base<Derived>& operator*=(
- Sim2Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this * other;
- return *this;
- }
- /// Setter of non-zero complex number.
- ///
- /// Precondition: ``z`` must not be close to zero.
- ///
- SOPHUS_FUNC void setComplex(Vector2<Scalar> const& z) {
- rxso2().setComplex(z);
- }
- /// Accessor of complex number.
- ///
- SOPHUS_FUNC
- typename Eigen::internal::traits<Derived>::RxSO2Type::ComplexType const&
- complex() const {
- return rxso2().complex();
- }
- /// Returns Rotation matrix
- ///
- SOPHUS_FUNC Matrix2<Scalar> rotationMatrix() const {
- return rxso2().rotationMatrix();
- }
- /// Mutator of SO2 group.
- ///
- SOPHUS_FUNC RxSO2Type& rxso2() {
- return static_cast<Derived*>(this)->rxso2();
- }
- /// Accessor of SO2 group.
- ///
- SOPHUS_FUNC RxSO2Type const& rxso2() const {
- return static_cast<Derived const*>(this)->rxso2();
- }
- /// Returns scale.
- ///
- SOPHUS_FUNC Scalar scale() const { return rxso2().scale(); }
- /// Setter of complex number using rotation matrix ``R``, leaves scale as is.
- ///
- SOPHUS_FUNC void setRotationMatrix(Matrix2<Scalar>& R) {
- rxso2().setRotationMatrix(R);
- }
- /// Sets scale and leaves rotation as is.
- ///
- /// Note: This function as a significant computational cost, since it has to
- /// call the square root twice.
- ///
- SOPHUS_FUNC void setScale(Scalar const& scale) { rxso2().setScale(scale); }
- /// Setter of complexnumber using scaled rotation matrix ``sR``.
- ///
- /// Precondition: The 2x2 matrix must be "scaled orthogonal"
- /// and have a positive determinant.
- ///
- SOPHUS_FUNC void setScaledRotationMatrix(Matrix2<Scalar> const& sR) {
- rxso2().setScaledRotationMatrix(sR);
- }
- /// Mutator of translation vector
- ///
- SOPHUS_FUNC TranslationType& translation() {
- return static_cast<Derived*>(this)->translation();
- }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC TranslationType const& translation() const {
- return static_cast<Derived const*>(this)->translation();
- }
- };
- /// Sim2 using default storage; derived from Sim2Base.
- template <class Scalar_, int Options>
- class Sim2 : public Sim2Base<Sim2<Scalar_, Options>> {
- public:
- using Base = Sim2Base<Sim2<Scalar_, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using RxSo2Member = RxSO2<Scalar, Options>;
- using TranslationMember = Vector2<Scalar, Options>;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- /// Default constructor initializes similarity transform to the identity.
- ///
- SOPHUS_FUNC Sim2();
- /// Copy constructor
- ///
- SOPHUS_FUNC Sim2(Sim2 const& other) = default;
- /// Copy-like constructor from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC Sim2(Sim2Base<OtherDerived> const& other)
- : rxso2_(other.rxso2()), translation_(other.translation()) {
- static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
- "must be same Scalar type");
- }
- /// Constructor from RxSO2 and translation vector
- ///
- template <class OtherDerived, class D>
- SOPHUS_FUNC Sim2(RxSO2Base<OtherDerived> const& rxso2,
- Eigen::MatrixBase<D> const& translation)
- : rxso2_(rxso2), translation_(translation) {
- static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
- "must be same Scalar type");
- static_assert(std::is_same<typename D::Scalar, Scalar>::value,
- "must be same Scalar type");
- }
- /// Constructor from complex number and translation vector.
- ///
- /// Precondition: complex number must not be close to zero.
- ///
- template <class D>
- SOPHUS_FUNC Sim2(Vector2<Scalar> const& complex_number,
- Eigen::MatrixBase<D> const& translation)
- : rxso2_(complex_number), translation_(translation) {
- static_assert(std::is_same<typename D::Scalar, Scalar>::value,
- "must be same Scalar type");
- }
- /// Constructor from 3x3 matrix
- ///
- /// Precondition: Top-left 2x2 matrix needs to be "scaled-orthogonal" with
- /// positive determinant. The last row must be ``(0, 0, 1)``.
- ///
- SOPHUS_FUNC explicit Sim2(Matrix<Scalar, 3, 3> const& T)
- : rxso2_((T.template topLeftCorner<2, 2>()).eval()),
- translation_(T.template block<2, 1>(0, 2)) {}
- /// This provides unsafe read/write access to internal data. Sim(2) is
- /// represented by a complex number (two parameters) and a 2-vector. When
- /// using direct write access, the user needs to take care of that the
- /// complex number is not set close to zero.
- ///
- SOPHUS_FUNC Scalar* data() {
- // rxso2_ and translation_ are laid out sequentially with no padding
- return rxso2_.data();
- }
- /// Const version of data() above.
- ///
- SOPHUS_FUNC Scalar const* data() const {
- // rxso2_ and translation_ are laid out sequentially with no padding
- return rxso2_.data();
- }
- /// Accessor of RxSO2
- ///
- SOPHUS_FUNC RxSo2Member& rxso2() { return rxso2_; }
- /// Mutator of RxSO2
- ///
- SOPHUS_FUNC RxSo2Member const& rxso2() const { return rxso2_; }
- /// Mutator of translation vector
- ///
- SOPHUS_FUNC TranslationMember& translation() { return translation_; }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC TranslationMember const& translation() const {
- return translation_;
- }
- /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
- ///
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
- return generator(i);
- }
- /// Derivative of Lie bracket with respect to first element.
- ///
- /// This function returns ``D_a [a, b]`` with ``D_a`` being the
- /// differential operator with respect to ``a``, ``[a, b]`` being the lie
- /// bracket of the Lie algebra sim(2).
- /// See ``lieBracket()`` below.
- ///
- /// Group exponential
- ///
- /// This functions takes in an element of tangent space and returns the
- /// corresponding element of the group Sim(2).
- ///
- /// The first two components of ``a`` represent the translational part
- /// ``upsilon`` in the tangent space of Sim(2), the following two components
- /// of ``a`` represents the rotation ``theta`` and the final component
- /// represents the logarithm of the scaling factor ``sigma``.
- /// To be more specific, this function computes ``expmat(hat(a))`` with
- /// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator
- /// of Sim(2), see below.
- ///
- SOPHUS_FUNC static Sim2<Scalar> exp(Tangent const& a) {
- // For the derivation of the exponential map of Sim(N) see
- // H. Strasdat, "Local Accuracy and Global Consistency for Efficient Visual
- // SLAM", PhD thesis, 2012.
- // http:///hauke.strasdat.net/files/strasdat_thesis_2012.pdf (A.5, pp. 186)
- Vector2<Scalar> const upsilon = a.segment(0, 2);
- Scalar const theta = a[2];
- Scalar const sigma = a[3];
- RxSO2<Scalar> rxso2 = RxSO2<Scalar>::exp(a.template tail<2>());
- Matrix2<Scalar> const Omega = SO2<Scalar>::hat(theta);
- Matrix2<Scalar> const W = details::calcW<Scalar, 2>(Omega, theta, sigma);
- return Sim2<Scalar>(rxso2, W * upsilon);
- }
- /// Returns the ith infinitesimal generators of Sim(2).
- ///
- /// The infinitesimal generators of Sim(2) are:
- ///
- /// ```
- /// | 0 0 1 |
- /// G_0 = | 0 0 0 |
- /// | 0 0 0 |
- ///
- /// | 0 0 0 |
- /// G_1 = | 0 0 1 |
- /// | 0 0 0 |
- ///
- /// | 0 -1 0 |
- /// G_2 = | 1 0 0 |
- /// | 0 0 0 |
- ///
- /// | 1 0 0 |
- /// G_3 = | 0 1 0 |
- /// | 0 0 0 |
- /// ```
- ///
- /// Precondition: ``i`` must be in [0, 3].
- ///
- SOPHUS_FUNC static Transformation generator(int i) {
- SOPHUS_ENSURE(i >= 0 || i <= 3, "i should be in range [0,3].");
- Tangent e;
- e.setZero();
- e[i] = Scalar(1);
- return hat(e);
- }
- /// hat-operator
- ///
- /// It takes in the 4-vector representation and returns the corresponding
- /// matrix representation of Lie algebra element.
- ///
- /// Formally, the hat()-operator of Sim(2) is defined as
- ///
- /// ``hat(.): R^4 -> R^{3x3}, hat(a) = sum_i a_i * G_i`` (for i=0,...,6)
- ///
- /// with ``G_i`` being the ith infinitesimal generator of Sim(2).
- ///
- /// The corresponding inverse is the vee()-operator, see below.
- ///
- SOPHUS_FUNC static Transformation hat(Tangent const& a) {
- Transformation Omega;
- Omega.template topLeftCorner<2, 2>() =
- RxSO2<Scalar>::hat(a.template tail<2>());
- Omega.col(2).template head<2>() = a.template head<2>();
- Omega.row(2).setZero();
- return Omega;
- }
- /// Lie bracket
- ///
- /// It computes the Lie bracket of Sim(2). To be more specific, it computes
- ///
- /// ``[omega_1, omega_2]_sim2 := vee([hat(omega_1), hat(omega_2)])``
- ///
- /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
- /// hat()-operator and ``vee(.)`` the vee()-operator of Sim(2).
- ///
- SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
- Vector2<Scalar> const upsilon1 = a.template head<2>();
- Vector2<Scalar> const upsilon2 = b.template head<2>();
- Scalar const theta1 = a[2];
- Scalar const theta2 = b[2];
- Scalar const sigma1 = a[3];
- Scalar const sigma2 = b[3];
- Tangent res;
- res[0] = -theta1 * upsilon2[1] + theta2 * upsilon1[1] +
- sigma1 * upsilon2[0] - sigma2 * upsilon1[0];
- res[1] = theta1 * upsilon2[0] - theta2 * upsilon1[0] +
- sigma1 * upsilon2[1] - sigma2 * upsilon1[1];
- res[2] = Scalar(0);
- res[3] = Scalar(0);
- return res;
- }
- /// Draw uniform sample from Sim(2) manifold.
- ///
- /// Translations are drawn component-wise from the range [-1, 1].
- /// The scale factor is drawn uniformly in log2-space from [-1, 1],
- /// hence the scale is in [0.5, 2].
- ///
- template <class UniformRandomBitGenerator>
- static Sim2 sampleUniform(UniformRandomBitGenerator& generator) {
- std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
- return Sim2(RxSO2<Scalar>::sampleUniform(generator),
- Vector2<Scalar>(uniform(generator), uniform(generator)));
- }
- /// vee-operator
- ///
- /// It takes the 3x3-matrix representation ``Omega`` and maps it to the
- /// corresponding 4-vector representation of Lie algebra.
- ///
- /// This is the inverse of the hat()-operator, see above.
- ///
- /// Precondition: ``Omega`` must have the following structure:
- ///
- /// | d -c a |
- /// | c d b |
- /// | 0 0 0 |
- ///
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- Tangent upsilon_omega_sigma;
- upsilon_omega_sigma.template head<2>() = Omega.col(2).template head<2>();
- upsilon_omega_sigma.template tail<2>() =
- RxSO2<Scalar>::vee(Omega.template topLeftCorner<2, 2>());
- return upsilon_omega_sigma;
- }
- protected:
- RxSo2Member rxso2_;
- TranslationMember translation_;
- };
- template <class Scalar, int Options>
- Sim2<Scalar, Options>::Sim2() : translation_(TranslationMember::Zero()) {
- static_assert(std::is_standard_layout<Sim2>::value,
- "Assume standard layout for the use of offsetof check below.");
- static_assert(
- offsetof(Sim2, rxso2_) + sizeof(Scalar) * RxSO2<Scalar>::num_parameters ==
- offsetof(Sim2, translation_),
- "This class assumes packed storage and hence will only work "
- "correctly depending on the compiler (options) - in "
- "particular when using [this->data(), this-data() + "
- "num_parameters] to access the raw data in a contiguous fashion.");
- }
- } // namespace Sophus
- namespace Eigen {
- /// Specialization of Eigen::Map for ``Sim2``; derived from Sim2Base.
- ///
- /// Allows us to wrap Sim2 objects around POD array.
- template <class Scalar_, int Options>
- class Map<Sophus::Sim2<Scalar_>, Options>
- : public Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_>, Options>> {
- public:
- using Base = Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_>, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- // LCOV_EXCL_START
- SOPHUS_INHERIT_ASSIGNMENT_OPERATORS(Map);
- // LCOV_EXCL_STOP
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar* coeffs)
- : rxso2_(coeffs),
- translation_(coeffs + Sophus::RxSO2<Scalar>::num_parameters) {}
- /// Mutator of RxSO2
- ///
- SOPHUS_FUNC Map<Sophus::RxSO2<Scalar>, Options>& rxso2() { return rxso2_; }
- /// Accessor of RxSO2
- ///
- SOPHUS_FUNC Map<Sophus::RxSO2<Scalar>, Options> const& rxso2() const {
- return rxso2_;
- }
- /// Mutator of translation vector
- ///
- SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options>& translation() {
- return translation_;
- }
- /// Accessor of translation vector
- SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options> const& translation() const {
- return translation_;
- }
- protected:
- Map<Sophus::RxSO2<Scalar>, Options> rxso2_;
- Map<Sophus::Vector2<Scalar>, Options> translation_;
- };
- /// Specialization of Eigen::Map for ``Sim2 const``; derived from Sim2Base.
- ///
- /// Allows us to wrap RxSO2 objects around POD array.
- template <class Scalar_, int Options>
- class Map<Sophus::Sim2<Scalar_> const, Options>
- : public Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_> const, Options>> {
- public:
- using Base = Sophus::Sim2Base<Map<Sophus::Sim2<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar const* coeffs)
- : rxso2_(coeffs),
- translation_(coeffs + Sophus::RxSO2<Scalar>::num_parameters) {}
- /// Accessor of RxSO2
- ///
- SOPHUS_FUNC Map<Sophus::RxSO2<Scalar> const, Options> const& rxso2() const {
- return rxso2_;
- }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC Map<Sophus::Vector2<Scalar> const, Options> const& translation()
- const {
- return translation_;
- }
- protected:
- Map<Sophus::RxSO2<Scalar> const, Options> const rxso2_;
- Map<Sophus::Vector2<Scalar> const, Options> const translation_;
- };
- } // namespace Eigen
- #endif
|