1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081 |
- /// @file
- /// Special Euclidean group SE(3) - rotation and translation in 3d.
- #ifndef SOPHUS_SE3_HPP
- #define SOPHUS_SE3_HPP
- #include "so3.hpp"
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class SE3;
- using SE3d = SE3<double>;
- using SE3f = SE3<float>;
- } // namespace Sophus
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options>
- struct traits<Sophus::SE3<Scalar_, Options>> {
- using Scalar = Scalar_;
- using TranslationType = Sophus::Vector3<Scalar, Options>;
- using SO3Type = Sophus::SO3<Scalar, Options>;
- };
- template <class Scalar_, int Options>
- struct traits<Map<Sophus::SE3<Scalar_>, Options>>
- : traits<Sophus::SE3<Scalar_, Options>> {
- using Scalar = Scalar_;
- using TranslationType = Map<Sophus::Vector3<Scalar>, Options>;
- using SO3Type = Map<Sophus::SO3<Scalar>, Options>;
- };
- template <class Scalar_, int Options>
- struct traits<Map<Sophus::SE3<Scalar_> const, Options>>
- : traits<Sophus::SE3<Scalar_, Options> const> {
- using Scalar = Scalar_;
- using TranslationType = Map<Sophus::Vector3<Scalar> const, Options>;
- using SO3Type = Map<Sophus::SO3<Scalar> const, Options>;
- };
- } // namespace internal
- } // namespace Eigen
- namespace Sophus {
- /// SE3 base type - implements SE3 class but is storage agnostic.
- ///
- /// SE(3) is the group of rotations and translation in 3d. It is the
- /// semi-direct product of SO(3) and the 3d Euclidean vector space. The class
- /// is represented using a composition of SO3 for rotation and a one 3-vector
- /// for translation.
- ///
- /// SE(3) is neither compact, nor a commutative group.
- ///
- /// See SO3 for more details of the rotation representation in 3d.
- ///
- template <class Derived>
- class SE3Base {
- public:
- using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
- using TranslationType =
- typename Eigen::internal::traits<Derived>::TranslationType;
- using SO3Type = typename Eigen::internal::traits<Derived>::SO3Type;
- using QuaternionType = typename SO3Type::QuaternionType;
- /// Degrees of freedom of manifold, number of dimensions in tangent space
- /// (three for translation, three for rotation).
- static int constexpr DoF = 6;
- /// Number of internal parameters used (4-tuple for quaternion, three for
- /// translation).
- static int constexpr num_parameters = 7;
- /// Group transformations are 4x4 matrices.
- static int constexpr N = 4;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector3<Scalar>;
- using HomogeneousPoint = Vector4<Scalar>;
- using Line = ParametrizedLine3<Scalar>;
- using Tangent = Vector<Scalar, DoF>;
- using Adjoint = Matrix<Scalar, DoF, DoF>;
- /// For binary operations the return type is determined with the
- /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
- /// types, as well as other compatible scalar types such as Ceres::Jet and
- /// double scalars with SE3 operations.
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename OtherDerived::Scalar>::ReturnType;
- template <typename OtherDerived>
- using SE3Product = SE3<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector3<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
- /// Adjoint transformation
- ///
- /// This function return the adjoint transformation ``Ad`` of the group
- /// element ``A`` such that for all ``x`` it holds that
- /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
- ///
- SOPHUS_FUNC Adjoint Adj() const {
- Sophus::Matrix3<Scalar> const R = so3().matrix();
- Adjoint res;
- res.block(0, 0, 3, 3) = R;
- res.block(3, 3, 3, 3) = R;
- res.block(0, 3, 3, 3) = SO3<Scalar>::hat(translation()) * R;
- res.block(3, 0, 3, 3) = Matrix3<Scalar>::Zero(3, 3);
- return res;
- }
- /// Extract rotation angle about canonical X-axis
- ///
- Scalar angleX() const { return so3().angleX(); }
- /// Extract rotation angle about canonical Y-axis
- ///
- Scalar angleY() const { return so3().angleY(); }
- /// Extract rotation angle about canonical Z-axis
- ///
- Scalar angleZ() const { return so3().angleZ(); }
- /// Returns copy of instance casted to NewScalarType.
- ///
- template <class NewScalarType>
- SOPHUS_FUNC SE3<NewScalarType> cast() const {
- return SE3<NewScalarType>(so3().template cast<NewScalarType>(),
- translation().template cast<NewScalarType>());
- }
- /// Returns derivative of this * exp(x) wrt x at x=0.
- ///
- SOPHUS_FUNC Matrix<Scalar, num_parameters, DoF> Dx_this_mul_exp_x_at_0()
- const {
- Matrix<Scalar, num_parameters, DoF> J;
- Eigen::Quaternion<Scalar> const q = unit_quaternion();
- Scalar const c0 = Scalar(0.5) * q.w();
- Scalar const c1 = Scalar(0.5) * q.z();
- Scalar const c2 = -c1;
- Scalar const c3 = Scalar(0.5) * q.y();
- Scalar const c4 = Scalar(0.5) * q.x();
- Scalar const c5 = -c4;
- Scalar const c6 = -c3;
- Scalar const c7 = q.w() * q.w();
- Scalar const c8 = q.x() * q.x();
- Scalar const c9 = q.y() * q.y();
- Scalar const c10 = -c9;
- Scalar const c11 = q.z() * q.z();
- Scalar const c12 = -c11;
- Scalar const c13 = Scalar(2) * q.w();
- Scalar const c14 = c13 * q.z();
- Scalar const c15 = Scalar(2) * q.x();
- Scalar const c16 = c15 * q.y();
- Scalar const c17 = c13 * q.y();
- Scalar const c18 = c15 * q.z();
- Scalar const c19 = c7 - c8;
- Scalar const c20 = c13 * q.x();
- Scalar const c21 = Scalar(2) * q.y() * q.z();
- J(0, 0) = 0;
- J(0, 1) = 0;
- J(0, 2) = 0;
- J(0, 3) = c0;
- J(0, 4) = c2;
- J(0, 5) = c3;
- J(1, 0) = 0;
- J(1, 1) = 0;
- J(1, 2) = 0;
- J(1, 3) = c1;
- J(1, 4) = c0;
- J(1, 5) = c5;
- J(2, 0) = 0;
- J(2, 1) = 0;
- J(2, 2) = 0;
- J(2, 3) = c6;
- J(2, 4) = c4;
- J(2, 5) = c0;
- J(3, 0) = 0;
- J(3, 1) = 0;
- J(3, 2) = 0;
- J(3, 3) = c5;
- J(3, 4) = c6;
- J(3, 5) = c2;
- J(4, 0) = c10 + c12 + c7 + c8;
- J(4, 1) = -c14 + c16;
- J(4, 2) = c17 + c18;
- J(4, 3) = 0;
- J(4, 4) = 0;
- J(4, 5) = 0;
- J(5, 0) = c14 + c16;
- J(5, 1) = c12 + c19 + c9;
- J(5, 2) = -c20 + c21;
- J(5, 3) = 0;
- J(5, 4) = 0;
- J(5, 5) = 0;
- J(6, 0) = -c17 + c18;
- J(6, 1) = c20 + c21;
- J(6, 2) = c10 + c11 + c19;
- J(6, 3) = 0;
- J(6, 4) = 0;
- J(6, 5) = 0;
- return J;
- }
- /// Returns group inverse.
- ///
- SOPHUS_FUNC SE3<Scalar> inverse() const {
- SO3<Scalar> invR = so3().inverse();
- return SE3<Scalar>(invR, invR * (translation() * Scalar(-1)));
- }
- /// Logarithmic map
- ///
- /// Computes the logarithm, the inverse of the group exponential which maps
- /// element of the group (rigid body transformations) to elements of the
- /// tangent space (twist).
- ///
- /// To be specific, this function computes ``vee(logmat(.))`` with
- /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
- /// of SE(3).
- ///
- SOPHUS_FUNC Tangent log() const {
- // For the derivation of the logarithm of SE(3), see
- // J. Gallier, D. Xu, "Computing exponentials of skew symmetric matrices
- // and logarithms of orthogonal matrices", IJRA 2002.
- // https:///pdfs.semanticscholar.org/cfe3/e4b39de63c8cabd89bf3feff7f5449fc981d.pdf
- // (Sec. 6., pp. 8)
- using std::abs;
- using std::cos;
- using std::sin;
- Tangent upsilon_omega;
- auto omega_and_theta = so3().logAndTheta();
- Scalar theta = omega_and_theta.theta;
- upsilon_omega.template tail<3>() = omega_and_theta.tangent;
- Matrix3<Scalar> const Omega =
- SO3<Scalar>::hat(upsilon_omega.template tail<3>());
- if (abs(theta) < Constants<Scalar>::epsilon()) {
- Matrix3<Scalar> const V_inv = Matrix3<Scalar>::Identity() -
- Scalar(0.5) * Omega +
- Scalar(1. / 12.) * (Omega * Omega);
- upsilon_omega.template head<3>() = V_inv * translation();
- } else {
- Scalar const half_theta = Scalar(0.5) * theta;
- Matrix3<Scalar> const V_inv =
- (Matrix3<Scalar>::Identity() - Scalar(0.5) * Omega +
- (Scalar(1) -
- theta * cos(half_theta) / (Scalar(2) * sin(half_theta))) /
- (theta * theta) * (Omega * Omega));
- upsilon_omega.template head<3>() = V_inv * translation();
- }
- return upsilon_omega;
- }
- /// It re-normalizes the SO3 element.
- ///
- /// Note: Because of the class invariant of SO3, there is typically no need to
- /// call this function directly.
- ///
- SOPHUS_FUNC void normalize() { so3().normalize(); }
- /// Returns 4x4 matrix representation of the instance.
- ///
- /// It has the following form:
- ///
- /// | R t |
- /// | o 1 |
- ///
- /// where ``R`` is a 3x3 rotation matrix, ``t`` a translation 3-vector and
- /// ``o`` a 3-column vector of zeros.
- ///
- SOPHUS_FUNC Transformation matrix() const {
- Transformation homogenious_matrix;
- homogenious_matrix.template topLeftCorner<3, 4>() = matrix3x4();
- homogenious_matrix.row(3) =
- Matrix<Scalar, 1, 4>(Scalar(0), Scalar(0), Scalar(0), Scalar(1));
- return homogenious_matrix;
- }
- /// Returns the significant first three rows of the matrix above.
- ///
- SOPHUS_FUNC Matrix<Scalar, 3, 4> matrix3x4() const {
- Matrix<Scalar, 3, 4> matrix;
- matrix.template topLeftCorner<3, 3>() = rotationMatrix();
- matrix.col(3) = translation();
- return matrix;
- }
- /// Assignment operator.
- ///
- SOPHUS_FUNC SE3Base& operator=(SE3Base const& other) = default;
- /// Assignment-like operator from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC SE3Base<Derived>& operator=(SE3Base<OtherDerived> const& other) {
- so3() = other.so3();
- translation() = other.translation();
- return *this;
- }
- /// Group multiplication, which is rotation concatenation.
- ///
- template <typename OtherDerived>
- SOPHUS_FUNC SE3Product<OtherDerived> operator*(
- SE3Base<OtherDerived> const& other) const {
- return SE3Product<OtherDerived>(
- so3() * other.so3(), translation() + so3() * other.translation());
- }
- /// Group action on 3-points.
- ///
- /// This function rotates and translates a three dimensional point ``p`` by
- /// the SE(3) element ``bar_T_foo = (bar_R_foo, t_bar)`` (= rigid body
- /// transformation):
- ///
- /// ``p_bar = bar_R_foo * p_foo + t_bar``.
- ///
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 3>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
- return so3() * p + translation();
- }
- /// Group action on homogeneous 3-points. See above for more details.
- ///
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 4>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- const PointProduct<HPointDerived> tp =
- so3() * p.template head<3>() + p(3) * translation();
- return HomogeneousPointProduct<HPointDerived>(tp(0), tp(1), tp(2), p(3));
- }
- /// Group action on lines.
- ///
- /// This function rotates and translates a parametrized line
- /// ``l(t) = o + t * d`` by the SE(3) element:
- ///
- /// Origin is transformed using SE(3) action
- /// Direction is transformed using rotation part
- ///
- SOPHUS_FUNC Line operator*(Line const& l) const {
- return Line((*this) * l.origin(), so3() * l.direction());
- }
- /// In-place group multiplication. This method is only valid if the return
- /// type of the multiplication is compatible with this SE3's Scalar type.
- ///
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC SE3Base<Derived>& operator*=(SE3Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this * other;
- return *this;
- }
- /// Returns rotation matrix.
- ///
- SOPHUS_FUNC Matrix3<Scalar> rotationMatrix() const { return so3().matrix(); }
- /// Mutator of SO3 group.
- ///
- SOPHUS_FUNC SO3Type& so3() { return static_cast<Derived*>(this)->so3(); }
- /// Accessor of SO3 group.
- ///
- SOPHUS_FUNC SO3Type const& so3() const {
- return static_cast<const Derived*>(this)->so3();
- }
- /// Takes in quaternion, and normalizes it.
- ///
- /// Precondition: The quaternion must not be close to zero.
- ///
- SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quat) {
- so3().setQuaternion(quat);
- }
- /// Sets ``so3`` using ``rotation_matrix``.
- ///
- /// Precondition: ``R`` must be orthogonal and ``det(R)=1``.
- ///
- SOPHUS_FUNC void setRotationMatrix(Matrix3<Scalar> const& R) {
- SOPHUS_ENSURE(isOrthogonal(R), "R is not orthogonal:\n %", R);
- SOPHUS_ENSURE(R.determinant() > Scalar(0), "det(R) is not positive: %",
- R.determinant());
- so3().setQuaternion(Eigen::Quaternion<Scalar>(R));
- }
- /// Returns internal parameters of SE(3).
- ///
- /// It returns (q.imag[0], q.imag[1], q.imag[2], q.real, t[0], t[1], t[2]),
- /// with q being the unit quaternion, t the translation 3-vector.
- ///
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
- Sophus::Vector<Scalar, num_parameters> p;
- p << so3().params(), translation();
- return p;
- }
- /// Mutator of translation vector.
- ///
- SOPHUS_FUNC TranslationType& translation() {
- return static_cast<Derived*>(this)->translation();
- }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC TranslationType const& translation() const {
- return static_cast<Derived const*>(this)->translation();
- }
- /// Accessor of unit quaternion.
- ///
- SOPHUS_FUNC QuaternionType const& unit_quaternion() const {
- return this->so3().unit_quaternion();
- }
- };
- /// SE3 using default storage; derived from SE3Base.
- template <class Scalar_, int Options>
- class SE3 : public SE3Base<SE3<Scalar_, Options>> {
- using Base = SE3Base<SE3<Scalar_, Options>>;
- public:
- static int constexpr DoF = Base::DoF;
- static int constexpr num_parameters = Base::num_parameters;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using SO3Member = SO3<Scalar, Options>;
- using TranslationMember = Vector3<Scalar, Options>;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- /// Default constructor initializes rigid body motion to the identity.
- ///
- SOPHUS_FUNC SE3();
- /// Copy constructor
- ///
- SOPHUS_FUNC SE3(SE3 const& other) = default;
- /// Copy-like constructor from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC SE3(SE3Base<OtherDerived> const& other)
- : so3_(other.so3()), translation_(other.translation()) {
- static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
- "must be same Scalar type");
- }
- /// Constructor from SO3 and translation vector
- ///
- template <class OtherDerived, class D>
- SOPHUS_FUNC SE3(SO3Base<OtherDerived> const& so3,
- Eigen::MatrixBase<D> const& translation)
- : so3_(so3), translation_(translation) {
- static_assert(std::is_same<typename OtherDerived::Scalar, Scalar>::value,
- "must be same Scalar type");
- static_assert(std::is_same<typename D::Scalar, Scalar>::value,
- "must be same Scalar type");
- }
- /// Constructor from rotation matrix and translation vector
- ///
- /// Precondition: Rotation matrix needs to be orthogonal with determinant
- /// of 1.
- ///
- SOPHUS_FUNC
- SE3(Matrix3<Scalar> const& rotation_matrix, Point const& translation)
- : so3_(rotation_matrix), translation_(translation) {}
- /// Constructor from quaternion and translation vector.
- ///
- /// Precondition: ``quaternion`` must not be close to zero.
- ///
- SOPHUS_FUNC SE3(Eigen::Quaternion<Scalar> const& quaternion,
- Point const& translation)
- : so3_(quaternion), translation_(translation) {}
- /// Constructor from 4x4 matrix
- ///
- /// Precondition: Rotation matrix needs to be orthogonal with determinant
- /// of 1. The last row must be ``(0, 0, 0, 1)``.
- ///
- SOPHUS_FUNC explicit SE3(Matrix4<Scalar> const& T)
- : so3_(T.template topLeftCorner<3, 3>()),
- translation_(T.template block<3, 1>(0, 3)) {
- SOPHUS_ENSURE((T.row(3) - Matrix<Scalar, 1, 4>(Scalar(0), Scalar(0),
- Scalar(0), Scalar(1)))
- .squaredNorm() < Constants<Scalar>::epsilon(),
- "Last row is not (0,0,0,1), but (%).", T.row(3));
- }
- /// This provides unsafe read/write access to internal data. SO(3) is
- /// represented by an Eigen::Quaternion (four parameters). When using direct
- /// write access, the user needs to take care of that the quaternion stays
- /// normalized.
- ///
- SOPHUS_FUNC Scalar* data() {
- // so3_ and translation_ are laid out sequentially with no padding
- return so3_.data();
- }
- /// Const version of data() above.
- ///
- SOPHUS_FUNC Scalar const* data() const {
- // so3_ and translation_ are laid out sequentially with no padding
- return so3_.data();
- }
- /// Mutator of SO3
- ///
- SOPHUS_FUNC SO3Member& so3() { return so3_; }
- /// Accessor of SO3
- ///
- SOPHUS_FUNC SO3Member const& so3() const { return so3_; }
- /// Mutator of translation vector
- ///
- SOPHUS_FUNC TranslationMember& translation() { return translation_; }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC TranslationMember const& translation() const {
- return translation_;
- }
- /// Returns derivative of exp(x) wrt. x.
- ///
- SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF> Dx_exp_x(
- Tangent const& upsilon_omega) {
- using std::cos;
- using std::pow;
- using std::sin;
- using std::sqrt;
- Sophus::Matrix<Scalar, num_parameters, DoF> J;
- Sophus::Vector<Scalar, 3> upsilon = upsilon_omega.template head<3>();
- Sophus::Vector<Scalar, 3> omega = upsilon_omega.template tail<3>();
- Scalar const c0 = omega[0] * omega[0];
- Scalar const c1 = omega[1] * omega[1];
- Scalar const c2 = omega[2] * omega[2];
- Scalar const c3 = c0 + c1 + c2;
- Scalar const o(0);
- Scalar const h(0.5);
- Scalar const i(1);
- if (c3 < Constants<Scalar>::epsilon()) {
- Scalar const ux = Scalar(0.5) * upsilon[0];
- Scalar const uy = Scalar(0.5) * upsilon[1];
- Scalar const uz = Scalar(0.5) * upsilon[2];
- /// clang-format off
- J << o, o, o, h, o, o, o, o, o, o, h, o, o, o, o, o, o, h, o, o, o, o, o,
- o, i, o, o, o, uz, -uy, o, i, o, -uz, o, ux, o, o, i, uy, -ux, o;
- /// clang-format on
- return J;
- }
- Scalar const c4 = sqrt(c3);
- Scalar const c5 = Scalar(1.0) / c4;
- Scalar const c6 = Scalar(0.5) * c4;
- Scalar const c7 = sin(c6);
- Scalar const c8 = c5 * c7;
- Scalar const c9 = pow(c3, -3.0L / 2.0L);
- Scalar const c10 = c7 * c9;
- Scalar const c11 = Scalar(1.0) / c3;
- Scalar const c12 = cos(c6);
- Scalar const c13 = Scalar(0.5) * c11 * c12;
- Scalar const c14 = c7 * c9 * omega[0];
- Scalar const c15 = Scalar(0.5) * c11 * c12 * omega[0];
- Scalar const c16 = -c14 * omega[1] + c15 * omega[1];
- Scalar const c17 = -c14 * omega[2] + c15 * omega[2];
- Scalar const c18 = omega[1] * omega[2];
- Scalar const c19 = -c10 * c18 + c13 * c18;
- Scalar const c20 = c5 * omega[0];
- Scalar const c21 = Scalar(0.5) * c7;
- Scalar const c22 = c5 * omega[1];
- Scalar const c23 = c5 * omega[2];
- Scalar const c24 = -c1;
- Scalar const c25 = -c2;
- Scalar const c26 = c24 + c25;
- Scalar const c27 = sin(c4);
- Scalar const c28 = -c27 + c4;
- Scalar const c29 = c28 * c9;
- Scalar const c30 = cos(c4);
- Scalar const c31 = -c30 + Scalar(1);
- Scalar const c32 = c11 * c31;
- Scalar const c33 = c32 * omega[2];
- Scalar const c34 = c29 * omega[0];
- Scalar const c35 = c34 * omega[1];
- Scalar const c36 = c32 * omega[1];
- Scalar const c37 = c34 * omega[2];
- Scalar const c38 = pow(c3, -5.0L / 2.0L);
- Scalar const c39 = Scalar(3) * c28 * c38 * omega[0];
- Scalar const c40 = c26 * c9;
- Scalar const c41 = -c20 * c30 + c20;
- Scalar const c42 = c27 * c9 * omega[0];
- Scalar const c43 = c42 * omega[1];
- Scalar const c44 = pow(c3, -2);
- Scalar const c45 = Scalar(2) * c31 * c44 * omega[0];
- Scalar const c46 = c45 * omega[1];
- Scalar const c47 = c29 * omega[2];
- Scalar const c48 = c43 - c46 + c47;
- Scalar const c49 = Scalar(3) * c0 * c28 * c38;
- Scalar const c50 = c9 * omega[0] * omega[2];
- Scalar const c51 = c41 * c50 - c49 * omega[2];
- Scalar const c52 = c9 * omega[0] * omega[1];
- Scalar const c53 = c41 * c52 - c49 * omega[1];
- Scalar const c54 = c42 * omega[2];
- Scalar const c55 = c45 * omega[2];
- Scalar const c56 = c29 * omega[1];
- Scalar const c57 = -c54 + c55 + c56;
- Scalar const c58 = Scalar(-2) * c56;
- Scalar const c59 = Scalar(3) * c28 * c38 * omega[1];
- Scalar const c60 = -c22 * c30 + c22;
- Scalar const c61 = -c18 * c39;
- Scalar const c62 = c32 + c61;
- Scalar const c63 = c27 * c9;
- Scalar const c64 = c1 * c63;
- Scalar const c65 = Scalar(2) * c31 * c44;
- Scalar const c66 = c1 * c65;
- Scalar const c67 = c50 * c60;
- Scalar const c68 = -c1 * c39 + c52 * c60;
- Scalar const c69 = c18 * c63;
- Scalar const c70 = c18 * c65;
- Scalar const c71 = c34 - c69 + c70;
- Scalar const c72 = Scalar(-2) * c47;
- Scalar const c73 = Scalar(3) * c28 * c38 * omega[2];
- Scalar const c74 = -c23 * c30 + c23;
- Scalar const c75 = -c32 + c61;
- Scalar const c76 = c2 * c63;
- Scalar const c77 = c2 * c65;
- Scalar const c78 = c52 * c74;
- Scalar const c79 = c34 + c69 - c70;
- Scalar const c80 = -c2 * c39 + c50 * c74;
- Scalar const c81 = -c0;
- Scalar const c82 = c25 + c81;
- Scalar const c83 = c32 * omega[0];
- Scalar const c84 = c18 * c29;
- Scalar const c85 = Scalar(-2) * c34;
- Scalar const c86 = c82 * c9;
- Scalar const c87 = c0 * c63;
- Scalar const c88 = c0 * c65;
- Scalar const c89 = c9 * omega[1] * omega[2];
- Scalar const c90 = c41 * c89;
- Scalar const c91 = c54 - c55 + c56;
- Scalar const c92 = -c1 * c73 + c60 * c89;
- Scalar const c93 = -c43 + c46 + c47;
- Scalar const c94 = -c2 * c59 + c74 * c89;
- Scalar const c95 = c24 + c81;
- Scalar const c96 = c9 * c95;
- J(0, 0) = o;
- J(0, 1) = o;
- J(0, 2) = o;
- J(0, 3) = -c0 * c10 + c0 * c13 + c8;
- J(0, 4) = c16;
- J(0, 5) = c17;
- J(1, 0) = o;
- J(1, 1) = o;
- J(1, 2) = o;
- J(1, 3) = c16;
- J(1, 4) = -c1 * c10 + c1 * c13 + c8;
- J(1, 5) = c19;
- J(2, 0) = o;
- J(2, 1) = o;
- J(2, 2) = o;
- J(2, 3) = c17;
- J(2, 4) = c19;
- J(2, 5) = -c10 * c2 + c13 * c2 + c8;
- J(3, 0) = o;
- J(3, 1) = o;
- J(3, 2) = o;
- J(3, 3) = -c20 * c21;
- J(3, 4) = -c21 * c22;
- J(3, 5) = -c21 * c23;
- J(4, 0) = c26 * c29 + Scalar(1);
- J(4, 1) = -c33 + c35;
- J(4, 2) = c36 + c37;
- J(4, 3) = upsilon[0] * (-c26 * c39 + c40 * c41) + upsilon[1] * (c53 + c57) +
- upsilon[2] * (c48 + c51);
- J(4, 4) = upsilon[0] * (-c26 * c59 + c40 * c60 + c58) +
- upsilon[1] * (c68 + c71) + upsilon[2] * (c62 + c64 - c66 + c67);
- J(4, 5) = upsilon[0] * (-c26 * c73 + c40 * c74 + c72) +
- upsilon[1] * (c75 - c76 + c77 + c78) + upsilon[2] * (c79 + c80);
- J(5, 0) = c33 + c35;
- J(5, 1) = c29 * c82 + Scalar(1);
- J(5, 2) = -c83 + c84;
- J(5, 3) = upsilon[0] * (c53 + c91) +
- upsilon[1] * (-c39 * c82 + c41 * c86 + c85) +
- upsilon[2] * (c75 - c87 + c88 + c90);
- J(5, 4) = upsilon[0] * (c68 + c79) + upsilon[1] * (-c59 * c82 + c60 * c86) +
- upsilon[2] * (c92 + c93);
- J(5, 5) = upsilon[0] * (c62 + c76 - c77 + c78) +
- upsilon[1] * (c72 - c73 * c82 + c74 * c86) +
- upsilon[2] * (c57 + c94);
- J(6, 0) = -c36 + c37;
- J(6, 1) = c83 + c84;
- J(6, 2) = c29 * c95 + Scalar(1);
- J(6, 3) = upsilon[0] * (c51 + c93) + upsilon[1] * (c62 + c87 - c88 + c90) +
- upsilon[2] * (-c39 * c95 + c41 * c96 + c85);
- J(6, 4) = upsilon[0] * (-c64 + c66 + c67 + c75) + upsilon[1] * (c48 + c92) +
- upsilon[2] * (c58 - c59 * c95 + c60 * c96);
- J(6, 5) = upsilon[0] * (c71 + c80) + upsilon[1] * (c91 + c94) +
- upsilon[2] * (-c73 * c95 + c74 * c96);
- return J;
- }
- /// Returns derivative of exp(x) wrt. x_i at x=0.
- ///
- SOPHUS_FUNC static Sophus::Matrix<Scalar, num_parameters, DoF>
- Dx_exp_x_at_0() {
- Sophus::Matrix<Scalar, num_parameters, DoF> J;
- Scalar const o(0);
- Scalar const h(0.5);
- Scalar const i(1);
- // clang-format off
- J << o, o, o, h, o, o, o,
- o, o, o, h, o, o, o,
- o, o, o, h, o, o, o,
- o, o, o, i, o, o, o,
- o, o, o, i, o, o, o,
- o, o, o, i, o, o, o;
- // clang-format on
- return J;
- }
- /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
- ///
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
- return generator(i);
- }
- /// Group exponential
- ///
- /// This functions takes in an element of tangent space (= twist ``a``) and
- /// returns the corresponding element of the group SE(3).
- ///
- /// The first three components of ``a`` represent the translational part
- /// ``upsilon`` in the tangent space of SE(3), while the last three components
- /// of ``a`` represents the rotation vector ``omega``.
- /// To be more specific, this function computes ``expmat(hat(a))`` with
- /// ``expmat(.)`` being the matrix exponential and ``hat(.)`` the hat-operator
- /// of SE(3), see below.
- ///
- SOPHUS_FUNC static SE3<Scalar> exp(Tangent const& a) {
- using std::cos;
- using std::sin;
- Vector3<Scalar> const omega = a.template tail<3>();
- Scalar theta;
- SO3<Scalar> const so3 = SO3<Scalar>::expAndTheta(omega, &theta);
- Matrix3<Scalar> const Omega = SO3<Scalar>::hat(omega);
- Matrix3<Scalar> const Omega_sq = Omega * Omega;
- Matrix3<Scalar> V;
- if (theta < Constants<Scalar>::epsilon()) {
- V = so3.matrix();
- /// Note: That is an accurate expansion!
- } else {
- Scalar theta_sq = theta * theta;
- V = (Matrix3<Scalar>::Identity() +
- (Scalar(1) - cos(theta)) / (theta_sq)*Omega +
- (theta - sin(theta)) / (theta_sq * theta) * Omega_sq);
- }
- return SE3<Scalar>(so3, V * a.template head<3>());
- }
- /// Returns closest SE3 given arbirary 4x4 matrix.
- ///
- template <class S = Scalar>
- SOPHUS_FUNC static enable_if_t<std::is_floating_point<S>::value, SE3>
- fitToSE3(Matrix4<Scalar> const& T) {
- return SE3(SO3<Scalar>::fitToSO3(T.template block<3, 3>(0, 0)),
- T.template block<3, 1>(0, 3));
- }
- /// Returns the ith infinitesimal generators of SE(3).
- ///
- /// The infinitesimal generators of SE(3) are:
- ///
- /// ```
- /// | 0 0 0 1 |
- /// G_0 = | 0 0 0 0 |
- /// | 0 0 0 0 |
- /// | 0 0 0 0 |
- ///
- /// | 0 0 0 0 |
- /// G_1 = | 0 0 0 1 |
- /// | 0 0 0 0 |
- /// | 0 0 0 0 |
- ///
- /// | 0 0 0 0 |
- /// G_2 = | 0 0 0 0 |
- /// | 0 0 0 1 |
- /// | 0 0 0 0 |
- ///
- /// | 0 0 0 0 |
- /// G_3 = | 0 0 -1 0 |
- /// | 0 1 0 0 |
- /// | 0 0 0 0 |
- ///
- /// | 0 0 1 0 |
- /// G_4 = | 0 0 0 0 |
- /// | -1 0 0 0 |
- /// | 0 0 0 0 |
- ///
- /// | 0 -1 0 0 |
- /// G_5 = | 1 0 0 0 |
- /// | 0 0 0 0 |
- /// | 0 0 0 0 |
- /// ```
- ///
- /// Precondition: ``i`` must be in [0, 5].
- ///
- SOPHUS_FUNC static Transformation generator(int i) {
- SOPHUS_ENSURE(i >= 0 && i <= 5, "i should be in range [0,5].");
- Tangent e;
- e.setZero();
- e[i] = Scalar(1);
- return hat(e);
- }
- /// hat-operator
- ///
- /// It takes in the 6-vector representation (= twist) and returns the
- /// corresponding matrix representation of Lie algebra element.
- ///
- /// Formally, the hat()-operator of SE(3) is defined as
- ///
- /// ``hat(.): R^6 -> R^{4x4}, hat(a) = sum_i a_i * G_i`` (for i=0,...,5)
- ///
- /// with ``G_i`` being the ith infinitesimal generator of SE(3).
- ///
- /// The corresponding inverse is the vee()-operator, see below.
- ///
- SOPHUS_FUNC static Transformation hat(Tangent const& a) {
- Transformation Omega;
- Omega.setZero();
- Omega.template topLeftCorner<3, 3>() =
- SO3<Scalar>::hat(a.template tail<3>());
- Omega.col(3).template head<3>() = a.template head<3>();
- return Omega;
- }
- /// Lie bracket
- ///
- /// It computes the Lie bracket of SE(3). To be more specific, it computes
- ///
- /// ``[omega_1, omega_2]_se3 := vee([hat(omega_1), hat(omega_2)])``
- ///
- /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
- /// hat()-operator and ``vee(.)`` the vee()-operator of SE(3).
- ///
- SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
- Vector3<Scalar> const upsilon1 = a.template head<3>();
- Vector3<Scalar> const upsilon2 = b.template head<3>();
- Vector3<Scalar> const omega1 = a.template tail<3>();
- Vector3<Scalar> const omega2 = b.template tail<3>();
- Tangent res;
- res.template head<3>() = omega1.cross(upsilon2) + upsilon1.cross(omega2);
- res.template tail<3>() = omega1.cross(omega2);
- return res;
- }
- /// Construct x-axis rotation.
- ///
- static SOPHUS_FUNC SE3 rotX(Scalar const& x) {
- return SE3(SO3<Scalar>::rotX(x), Sophus::Vector3<Scalar>::Zero());
- }
- /// Construct y-axis rotation.
- ///
- static SOPHUS_FUNC SE3 rotY(Scalar const& y) {
- return SE3(SO3<Scalar>::rotY(y), Sophus::Vector3<Scalar>::Zero());
- }
- /// Construct z-axis rotation.
- ///
- static SOPHUS_FUNC SE3 rotZ(Scalar const& z) {
- return SE3(SO3<Scalar>::rotZ(z), Sophus::Vector3<Scalar>::Zero());
- }
- /// Draw uniform sample from SE(3) manifold.
- ///
- /// Translations are drawn component-wise from the range [-1, 1].
- ///
- template <class UniformRandomBitGenerator>
- static SE3 sampleUniform(UniformRandomBitGenerator& generator) {
- std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
- return SE3(SO3<Scalar>::sampleUniform(generator),
- Vector3<Scalar>(uniform(generator), uniform(generator),
- uniform(generator)));
- }
- /// Construct a translation only SE3 instance.
- ///
- template <class T0, class T1, class T2>
- static SOPHUS_FUNC SE3 trans(T0 const& x, T1 const& y, T2 const& z) {
- return SE3(SO3<Scalar>(), Vector3<Scalar>(x, y, z));
- }
- static SOPHUS_FUNC SE3 trans(Vector3<Scalar> const& xyz) {
- return SE3(SO3<Scalar>(), xyz);
- }
- /// Construct x-axis translation.
- ///
- static SOPHUS_FUNC SE3 transX(Scalar const& x) {
- return SE3::trans(x, Scalar(0), Scalar(0));
- }
- /// Construct y-axis translation.
- ///
- static SOPHUS_FUNC SE3 transY(Scalar const& y) {
- return SE3::trans(Scalar(0), y, Scalar(0));
- }
- /// Construct z-axis translation.
- ///
- static SOPHUS_FUNC SE3 transZ(Scalar const& z) {
- return SE3::trans(Scalar(0), Scalar(0), z);
- }
- /// vee-operator
- ///
- /// It takes 4x4-matrix representation ``Omega`` and maps it to the
- /// corresponding 6-vector representation of Lie algebra.
- ///
- /// This is the inverse of the hat()-operator, see above.
- ///
- /// Precondition: ``Omega`` must have the following structure:
- ///
- /// | 0 -f e a |
- /// | f 0 -d b |
- /// | -e d 0 c
- /// | 0 0 0 0 | .
- ///
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- Tangent upsilon_omega;
- upsilon_omega.template head<3>() = Omega.col(3).template head<3>();
- upsilon_omega.template tail<3>() =
- SO3<Scalar>::vee(Omega.template topLeftCorner<3, 3>());
- return upsilon_omega;
- }
- protected:
- SO3Member so3_;
- TranslationMember translation_;
- };
- template <class Scalar, int Options>
- SE3<Scalar, Options>::SE3() : translation_(TranslationMember::Zero()) {
- static_assert(std::is_standard_layout<SE3>::value,
- "Assume standard layout for the use of offsetof check below.");
- static_assert(
- offsetof(SE3, so3_) + sizeof(Scalar) * SO3<Scalar>::num_parameters ==
- offsetof(SE3, translation_),
- "This class assumes packed storage and hence will only work "
- "correctly depending on the compiler (options) - in "
- "particular when using [this->data(), this-data() + "
- "num_parameters] to access the raw data in a contiguous fashion.");
- }
- } // namespace Sophus
- namespace Eigen {
- /// Specialization of Eigen::Map for ``SE3``; derived from SE3Base.
- ///
- /// Allows us to wrap SE3 objects around POD array.
- template <class Scalar_, int Options>
- class Map<Sophus::SE3<Scalar_>, Options>
- : public Sophus::SE3Base<Map<Sophus::SE3<Scalar_>, Options>> {
- public:
- using Base = Sophus::SE3Base<Map<Sophus::SE3<Scalar_>, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- // LCOV_EXCL_START
- SOPHUS_INHERIT_ASSIGNMENT_OPERATORS(Map);
- // LCOV_EXCL_STOP
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar* coeffs)
- : so3_(coeffs),
- translation_(coeffs + Sophus::SO3<Scalar>::num_parameters) {}
- /// Mutator of SO3
- ///
- SOPHUS_FUNC Map<Sophus::SO3<Scalar>, Options>& so3() { return so3_; }
- /// Accessor of SO3
- ///
- SOPHUS_FUNC Map<Sophus::SO3<Scalar>, Options> const& so3() const {
- return so3_;
- }
- /// Mutator of translation vector
- ///
- SOPHUS_FUNC Map<Sophus::Vector3<Scalar, Options>>& translation() {
- return translation_;
- }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC Map<Sophus::Vector3<Scalar, Options>> const& translation() const {
- return translation_;
- }
- protected:
- Map<Sophus::SO3<Scalar>, Options> so3_;
- Map<Sophus::Vector3<Scalar>, Options> translation_;
- };
- /// Specialization of Eigen::Map for ``SE3 const``; derived from SE3Base.
- ///
- /// Allows us to wrap SE3 objects around POD array.
- template <class Scalar_, int Options>
- class Map<Sophus::SE3<Scalar_> const, Options>
- : public Sophus::SE3Base<Map<Sophus::SE3<Scalar_> const, Options>> {
- public:
- using Base = Sophus::SE3Base<Map<Sophus::SE3<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar const* coeffs)
- : so3_(coeffs),
- translation_(coeffs + Sophus::SO3<Scalar>::num_parameters) {}
- /// Accessor of SO3
- ///
- SOPHUS_FUNC Map<Sophus::SO3<Scalar> const, Options> const& so3() const {
- return so3_;
- }
- /// Accessor of translation vector
- ///
- SOPHUS_FUNC Map<Sophus::Vector3<Scalar> const, Options> const& translation()
- const {
- return translation_;
- }
- protected:
- Map<Sophus::SO3<Scalar> const, Options> const so3_;
- Map<Sophus::Vector3<Scalar> const, Options> const translation_;
- };
- } // namespace Eigen
- #endif
|