123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730 |
- /// @file
- /// Direct product R X SO(3) - rotation and scaling in 3d.
- #ifndef SOPHUS_RXSO3_HPP
- #define SOPHUS_RXSO3_HPP
- #include "so3.hpp"
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class RxSO3;
- using RxSO3d = RxSO3<double>;
- using RxSO3f = RxSO3<float>;
- } // namespace Sophus
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options_>
- struct traits<Sophus::RxSO3<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Eigen::Quaternion<Scalar, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::RxSO3<Scalar_>, Options_>>
- : traits<Sophus::RxSO3<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Map<Eigen::Quaternion<Scalar>, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::RxSO3<Scalar_> const, Options_>>
- : traits<Sophus::RxSO3<Scalar_, Options_> const> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using QuaternionType = Map<Eigen::Quaternion<Scalar> const, Options>;
- };
- } // namespace internal
- } // namespace Eigen
- namespace Sophus {
- /// RxSO3 base type - implements RxSO3 class but is storage agnostic
- ///
- /// This class implements the group ``R+ x SO(3)``, the direct product of the
- /// group of positive scalar 3x3 matrices (= isomorph to the positive
- /// real numbers) and the three-dimensional special orthogonal group SO(3).
- /// Geometrically, it is the group of rotation and scaling in three dimensions.
- /// As a matrix groups, RxSO3 consists of matrices of the form ``s * R``
- /// where ``R`` is an orthogonal matrix with ``det(R)=1`` and ``s > 0``
- /// being a positive real number.
- ///
- /// Internally, RxSO3 is represented by the group of non-zero quaternions.
- /// In particular, the scale equals the squared(!) norm of the quaternion ``q``,
- /// ``s = |q|^2``. This is a most compact representation since the degrees of
- /// freedom (DoF) of RxSO3 (=4) equals the number of internal parameters (=4).
- ///
- /// This class has the explicit class invariant that the scale ``s`` is not
- /// too close to zero. Strictly speaking, it must hold that:
- ///
- /// ``quaternion().squaredNorm() >= Constants::epsilon()``.
- ///
- /// In order to obey this condition, group multiplication is implemented with
- /// saturation such that a product always has a scale which is equal or greater
- /// this threshold.
- template <class Derived>
- class RxSO3Base {
- public:
- static constexpr int Options = Eigen::internal::traits<Derived>::Options;
- using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
- using QuaternionType =
- typename Eigen::internal::traits<Derived>::QuaternionType;
- using QuaternionTemporaryType = Eigen::Quaternion<Scalar, Options>;
- /// Degrees of freedom of manifold, number of dimensions in tangent space
- /// (three for rotation and one for scaling).
- static int constexpr DoF = 4;
- /// Number of internal parameters used (quaternion is a 4-tuple).
- static int constexpr num_parameters = 4;
- /// Group transformations are 3x3 matrices.
- static int constexpr N = 3;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector3<Scalar>;
- using HomogeneousPoint = Vector4<Scalar>;
- using Line = ParametrizedLine3<Scalar>;
- using Tangent = Vector<Scalar, DoF>;
- using Adjoint = Matrix<Scalar, DoF, DoF>;
- struct TangentAndTheta {
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- Tangent tangent;
- Scalar theta;
- };
- /// For binary operations the return type is determined with the
- /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
- /// types, as well as other compatible scalar types such as Ceres::Jet and
- /// double scalars with RxSO3 operations.
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename OtherDerived::Scalar>::ReturnType;
- template <typename OtherDerived>
- using RxSO3Product = RxSO3<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector3<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector4<ReturnScalar<HPointDerived>>;
- /// Adjoint transformation
- ///
- /// This function return the adjoint transformation ``Ad`` of the group
- /// element ``A`` such that for all ``x`` it holds that
- /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
- ///
- /// For RxSO(3), it simply returns the rotation matrix corresponding to ``A``.
- ///
- SOPHUS_FUNC Adjoint Adj() const {
- Adjoint res;
- res.setIdentity();
- res.template topLeftCorner<3, 3>() = rotationMatrix();
- return res;
- }
- /// Returns copy of instance casted to NewScalarType.
- ///
- template <class NewScalarType>
- SOPHUS_FUNC RxSO3<NewScalarType> cast() const {
- return RxSO3<NewScalarType>(quaternion().template cast<NewScalarType>());
- }
- /// This provides unsafe read/write access to internal data. RxSO(3) is
- /// represented by an Eigen::Quaternion (four parameters). When using direct
- /// write access, the user needs to take care of that the quaternion is not
- /// set close to zero.
- ///
- /// Note: The first three Scalars represent the imaginary parts, while the
- /// forth Scalar represent the real part.
- ///
- SOPHUS_FUNC Scalar* data() { return quaternion_nonconst().coeffs().data(); }
- /// Const version of data() above.
- ///
- SOPHUS_FUNC Scalar const* data() const {
- return quaternion().coeffs().data();
- }
- /// Returns group inverse.
- ///
- SOPHUS_FUNC RxSO3<Scalar> inverse() const {
- return RxSO3<Scalar>(quaternion().inverse());
- }
- /// Logarithmic map
- ///
- /// Computes the logarithm, the inverse of the group exponential which maps
- /// element of the group (scaled rotation matrices) to elements of the tangent
- /// space (rotation-vector plus logarithm of scale factor).
- ///
- /// To be specific, this function computes ``vee(logmat(.))`` with
- /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
- /// of RxSO3.
- ///
- SOPHUS_FUNC Tangent log() const { return logAndTheta().tangent; }
- /// As above, but also returns ``theta = |omega|``.
- ///
- SOPHUS_FUNC TangentAndTheta logAndTheta() const {
- using std::log;
- Scalar scale = quaternion().squaredNorm();
- TangentAndTheta result;
- result.tangent[3] = log(scale);
- auto omega_and_theta = SO3<Scalar>(quaternion()).logAndTheta();
- result.tangent.template head<3>() = omega_and_theta.tangent;
- result.theta = omega_and_theta.theta;
- return result;
- }
- /// Returns 3x3 matrix representation of the instance.
- ///
- /// For RxSO3, the matrix representation is an scaled orthogonal matrix ``sR``
- /// with ``det(R)=s^3``, thus a scaled rotation matrix ``R`` with scale
- /// ``s``.
- ///
- SOPHUS_FUNC Transformation matrix() const {
- Transformation sR;
- Scalar const vx_sq = quaternion().vec().x() * quaternion().vec().x();
- Scalar const vy_sq = quaternion().vec().y() * quaternion().vec().y();
- Scalar const vz_sq = quaternion().vec().z() * quaternion().vec().z();
- Scalar const w_sq = quaternion().w() * quaternion().w();
- Scalar const two_vx = Scalar(2) * quaternion().vec().x();
- Scalar const two_vy = Scalar(2) * quaternion().vec().y();
- Scalar const two_vz = Scalar(2) * quaternion().vec().z();
- Scalar const two_vx_vy = two_vx * quaternion().vec().y();
- Scalar const two_vx_vz = two_vx * quaternion().vec().z();
- Scalar const two_vx_w = two_vx * quaternion().w();
- Scalar const two_vy_vz = two_vy * quaternion().vec().z();
- Scalar const two_vy_w = two_vy * quaternion().w();
- Scalar const two_vz_w = two_vz * quaternion().w();
- sR(0, 0) = vx_sq - vy_sq - vz_sq + w_sq;
- sR(1, 0) = two_vx_vy + two_vz_w;
- sR(2, 0) = two_vx_vz - two_vy_w;
- sR(0, 1) = two_vx_vy - two_vz_w;
- sR(1, 1) = -vx_sq + vy_sq - vz_sq + w_sq;
- sR(2, 1) = two_vx_w + two_vy_vz;
- sR(0, 2) = two_vx_vz + two_vy_w;
- sR(1, 2) = -two_vx_w + two_vy_vz;
- sR(2, 2) = -vx_sq - vy_sq + vz_sq + w_sq;
- return sR;
- }
- /// Assignment operator.
- ///
- SOPHUS_FUNC RxSO3Base& operator=(RxSO3Base const& other) = default;
- /// Assignment-like operator from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC RxSO3Base<Derived>& operator=(
- RxSO3Base<OtherDerived> const& other) {
- quaternion_nonconst() = other.quaternion();
- return *this;
- }
- /// Group multiplication, which is rotation concatenation and scale
- /// multiplication.
- ///
- /// Note: This function performs saturation for products close to zero in
- /// order to ensure the class invariant.
- ///
- template <typename OtherDerived>
- SOPHUS_FUNC RxSO3Product<OtherDerived> operator*(
- RxSO3Base<OtherDerived> const& other) const {
- using ResultT = ReturnScalar<OtherDerived>;
- typename RxSO3Product<OtherDerived>::QuaternionType result_quaternion(
- quaternion() * other.quaternion());
- ResultT scale = result_quaternion.squaredNorm();
- if (scale < Constants<ResultT>::epsilon()) {
- SOPHUS_ENSURE(scale > ResultT(0), "Scale must be greater zero.");
- /// Saturation to ensure class invariant.
- result_quaternion.normalize();
- result_quaternion.coeffs() *= sqrt(Constants<Scalar>::epsilon());
- }
- return RxSO3Product<OtherDerived>(result_quaternion);
- }
- /// Group action on 3-points.
- ///
- /// This function rotates a 3 dimensional point ``p`` by the SO3 element
- /// ``bar_R_foo`` (= rotation matrix) and scales it by the scale factor
- /// ``s``:
- ///
- /// ``p_bar = s * (bar_R_foo * p_foo)``.
- ///
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 3>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
- // Follows http:///eigen.tuxfamily.org/bz/show_bug.cgi?id=459
- Scalar scale = quaternion().squaredNorm();
- PointProduct<PointDerived> two_vec_cross_p = quaternion().vec().cross(p);
- two_vec_cross_p += two_vec_cross_p;
- return scale * p + (quaternion().w() * two_vec_cross_p +
- quaternion().vec().cross(two_vec_cross_p));
- }
- /// Group action on homogeneous 3-points. See above for more details.
- ///
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 4>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- const auto rsp = *this * p.template head<3>();
- return HomogeneousPointProduct<HPointDerived>(rsp(0), rsp(1), rsp(2), p(3));
- }
- /// Group action on lines.
- ///
- /// This function rotates a parametrized line ``l(t) = o + t * d`` by the SO3
- /// element ans scales it by the scale factor:
- ///
- /// Origin ``o`` is rotated and scaled
- /// Direction ``d`` is rotated (preserving it's norm)
- ///
- SOPHUS_FUNC Line operator*(Line const& l) const {
- return Line((*this) * l.origin(),
- (*this) * l.direction() / quaternion().squaredNorm());
- }
- /// In-place group multiplication. This method is only valid if the return
- /// type of the multiplication is compatible with this SO3's Scalar type.
- ///
- /// Note: This function performs saturation for products close to zero in
- /// order to ensure the class invariant.
- ///
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC RxSO3Base<Derived>& operator*=(
- RxSO3Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this * other;
- return *this;
- }
- /// Returns internal parameters of RxSO(3).
- ///
- /// It returns (q.imag[0], q.imag[1], q.imag[2], q.real), with q being the
- /// quaternion.
- ///
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
- return quaternion().coeffs();
- }
- /// Sets non-zero quaternion
- ///
- /// Precondition: ``quat`` must not be close to zero.
- SOPHUS_FUNC void setQuaternion(Eigen::Quaternion<Scalar> const& quat) {
- SOPHUS_ENSURE(quat.squaredNorm() > Constants<Scalar>::epsilon() *
- Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- static_cast<Derived*>(this)->quaternion_nonconst() = quat;
- }
- /// Accessor of quaternion.
- ///
- SOPHUS_FUNC QuaternionType const& quaternion() const {
- return static_cast<Derived const*>(this)->quaternion();
- }
- /// Returns rotation matrix.
- ///
- SOPHUS_FUNC Transformation rotationMatrix() const {
- QuaternionTemporaryType norm_quad = quaternion();
- norm_quad.normalize();
- return norm_quad.toRotationMatrix();
- }
- /// Returns scale.
- ///
- SOPHUS_FUNC
- Scalar scale() const { return quaternion().squaredNorm(); }
- /// Setter of quaternion using rotation matrix ``R``, leaves scale as is.
- ///
- SOPHUS_FUNC void setRotationMatrix(Transformation const& R) {
- using std::sqrt;
- Scalar saved_scale = scale();
- quaternion_nonconst() = R;
- quaternion_nonconst().coeffs() *= sqrt(saved_scale);
- }
- /// Sets scale and leaves rotation as is.
- ///
- /// Note: This function as a significant computational cost, since it has to
- /// call the square root twice.
- ///
- SOPHUS_FUNC
- void setScale(Scalar const& scale) {
- using std::sqrt;
- quaternion_nonconst().normalize();
- quaternion_nonconst().coeffs() *= sqrt(scale);
- }
- /// Setter of quaternion using scaled rotation matrix ``sR``.
- ///
- /// Precondition: The 3x3 matrix must be "scaled orthogonal"
- /// and have a positive determinant.
- ///
- SOPHUS_FUNC void setScaledRotationMatrix(Transformation const& sR) {
- Transformation squared_sR = sR * sR.transpose();
- Scalar squared_scale =
- Scalar(1. / 3.) *
- (squared_sR(0, 0) + squared_sR(1, 1) + squared_sR(2, 2));
- SOPHUS_ENSURE(squared_scale >= Constants<Scalar>::epsilon() *
- Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- Scalar scale = sqrt(squared_scale);
- quaternion_nonconst() = sR / scale;
- quaternion_nonconst().coeffs() *= sqrt(scale);
- }
- /// Setter of SO(3) rotations, leaves scale as is.
- ///
- SOPHUS_FUNC void setSO3(SO3<Scalar> const& so3) {
- using std::sqrt;
- Scalar saved_scale = scale();
- quaternion_nonconst() = so3.unit_quaternion();
- quaternion_nonconst().coeffs() *= sqrt(saved_scale);
- }
- SOPHUS_FUNC SO3<Scalar> so3() const { return SO3<Scalar>(quaternion()); }
- protected:
- /// Mutator of quaternion is private to ensure class invariant.
- ///
- SOPHUS_FUNC QuaternionType& quaternion_nonconst() {
- return static_cast<Derived*>(this)->quaternion_nonconst();
- }
- };
- /// RxSO3 using storage; derived from RxSO3Base.
- template <class Scalar_, int Options>
- class RxSO3 : public RxSO3Base<RxSO3<Scalar_, Options>> {
- public:
- using Base = RxSO3Base<RxSO3<Scalar_, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using QuaternionMember = Eigen::Quaternion<Scalar, Options>;
- /// ``Base`` is friend so quaternion_nonconst can be accessed from ``Base``.
- friend class RxSO3Base<RxSO3<Scalar_, Options>>;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- /// Default constructor initializes quaternion to identity rotation and scale
- /// to 1.
- ///
- SOPHUS_FUNC RxSO3()
- : quaternion_(Scalar(1), Scalar(0), Scalar(0), Scalar(0)) {}
- /// Copy constructor
- ///
- SOPHUS_FUNC RxSO3(RxSO3 const& other) = default;
- /// Copy-like constructor from OtherDerived
- ///
- template <class OtherDerived>
- SOPHUS_FUNC RxSO3(RxSO3Base<OtherDerived> const& other)
- : quaternion_(other.quaternion()) {}
- /// Constructor from scaled rotation matrix
- ///
- /// Precondition: rotation matrix need to be scaled orthogonal with
- /// determinant of ``s^3``.
- ///
- SOPHUS_FUNC explicit RxSO3(Transformation const& sR) {
- this->setScaledRotationMatrix(sR);
- }
- /// Constructor from scale factor and rotation matrix ``R``.
- ///
- /// Precondition: Rotation matrix ``R`` must to be orthogonal with determinant
- /// of 1 and ``scale`` must not be close to zero.
- ///
- SOPHUS_FUNC RxSO3(Scalar const& scale, Transformation const& R)
- : quaternion_(R) {
- SOPHUS_ENSURE(scale >= Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- using std::sqrt;
- quaternion_.coeffs() *= sqrt(scale);
- }
- /// Constructor from scale factor and SO3
- ///
- /// Precondition: ``scale`` must not to be close to zero.
- ///
- SOPHUS_FUNC RxSO3(Scalar const& scale, SO3<Scalar> const& so3)
- : quaternion_(so3.unit_quaternion()) {
- SOPHUS_ENSURE(scale >= Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- using std::sqrt;
- quaternion_.coeffs() *= sqrt(scale);
- }
- /// Constructor from quaternion
- ///
- /// Precondition: quaternion must not be close to zero.
- ///
- template <class D>
- SOPHUS_FUNC explicit RxSO3(Eigen::QuaternionBase<D> const& quat)
- : quaternion_(quat) {
- static_assert(std::is_same<typename D::Scalar, Scalar>::value,
- "must be same Scalar type.");
- SOPHUS_ENSURE(quaternion_.squaredNorm() >= Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- }
- /// Accessor of quaternion.
- ///
- SOPHUS_FUNC QuaternionMember const& quaternion() const { return quaternion_; }
- /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
- ///
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
- return generator(i);
- }
- /// Group exponential
- ///
- /// This functions takes in an element of tangent space (= rotation 3-vector
- /// plus logarithm of scale) and returns the corresponding element of the
- /// group RxSO3.
- ///
- /// To be more specific, thixs function computes ``expmat(hat(omega))``
- /// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
- /// hat()-operator of RSO3.
- ///
- SOPHUS_FUNC static RxSO3<Scalar> exp(Tangent const& a) {
- Scalar theta;
- return expAndTheta(a, &theta);
- }
- /// As above, but also returns ``theta = |omega|`` as out-parameter.
- ///
- /// Precondition: ``theta`` must not be ``nullptr``.
- ///
- SOPHUS_FUNC static RxSO3<Scalar> expAndTheta(Tangent const& a,
- Scalar* theta) {
- SOPHUS_ENSURE(theta != nullptr, "must not be nullptr.");
- using std::exp;
- using std::sqrt;
- Vector3<Scalar> const omega = a.template head<3>();
- Scalar sigma = a[3];
- Scalar sqrt_scale = sqrt(exp(sigma));
- Eigen::Quaternion<Scalar> quat =
- SO3<Scalar>::expAndTheta(omega, theta).unit_quaternion();
- quat.coeffs() *= sqrt_scale;
- return RxSO3<Scalar>(quat);
- }
- /// Returns the ith infinitesimal generators of ``R+ x SO(3)``.
- ///
- /// The infinitesimal generators of RxSO3 are:
- ///
- /// ```
- /// | 0 0 0 |
- /// G_0 = | 0 0 -1 |
- /// | 0 1 0 |
- ///
- /// | 0 0 1 |
- /// G_1 = | 0 0 0 |
- /// | -1 0 0 |
- ///
- /// | 0 -1 0 |
- /// G_2 = | 1 0 0 |
- /// | 0 0 0 |
- ///
- /// | 1 0 0 |
- /// G_2 = | 0 1 0 |
- /// | 0 0 1 |
- /// ```
- ///
- /// Precondition: ``i`` must be 0, 1, 2 or 3.
- ///
- SOPHUS_FUNC static Transformation generator(int i) {
- SOPHUS_ENSURE(i >= 0 && i <= 3, "i should be in range [0,3].");
- Tangent e;
- e.setZero();
- e[i] = Scalar(1);
- return hat(e);
- }
- /// hat-operator
- ///
- /// It takes in the 4-vector representation ``a`` (= rotation vector plus
- /// logarithm of scale) and returns the corresponding matrix representation
- /// of Lie algebra element.
- ///
- /// Formally, the hat()-operator of RxSO3 is defined as
- ///
- /// ``hat(.): R^4 -> R^{3x3}, hat(a) = sum_i a_i * G_i`` (for i=0,1,2,3)
- ///
- /// with ``G_i`` being the ith infinitesimal generator of RxSO3.
- ///
- /// The corresponding inverse is the vee()-operator, see below.
- ///
- SOPHUS_FUNC static Transformation hat(Tangent const& a) {
- Transformation A;
- // clang-format off
- A << a(3), -a(2), a(1),
- a(2), a(3), -a(0),
- -a(1), a(0), a(3);
- // clang-format on
- return A;
- }
- /// Lie bracket
- ///
- /// It computes the Lie bracket of RxSO(3). To be more specific, it computes
- ///
- /// ``[omega_1, omega_2]_rxso3 := vee([hat(omega_1), hat(omega_2)])``
- ///
- /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
- /// hat()-operator and ``vee(.)`` the vee()-operator of RxSO3.
- ///
- SOPHUS_FUNC static Tangent lieBracket(Tangent const& a, Tangent const& b) {
- Vector3<Scalar> const omega1 = a.template head<3>();
- Vector3<Scalar> const omega2 = b.template head<3>();
- Vector4<Scalar> res;
- res.template head<3>() = omega1.cross(omega2);
- res[3] = Scalar(0);
- return res;
- }
- /// Draw uniform sample from RxSO(3) manifold.
- ///
- /// The scale factor is drawn uniformly in log2-space from [-1, 1],
- /// hence the scale is in [0.5, 2].
- ///
- template <class UniformRandomBitGenerator>
- static RxSO3 sampleUniform(UniformRandomBitGenerator& generator) {
- std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
- using std::exp2;
- return RxSO3(exp2(uniform(generator)),
- SO3<Scalar>::sampleUniform(generator));
- }
- /// vee-operator
- ///
- /// It takes the 3x3-matrix representation ``Omega`` and maps it to the
- /// corresponding vector representation of Lie algebra.
- ///
- /// This is the inverse of the hat()-operator, see above.
- ///
- /// Precondition: ``Omega`` must have the following structure:
- ///
- /// | d -c b |
- /// | c d -a |
- /// | -b a d |
- ///
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- using std::abs;
- return Tangent(Omega(2, 1), Omega(0, 2), Omega(1, 0), Omega(0, 0));
- }
- protected:
- SOPHUS_FUNC QuaternionMember& quaternion_nonconst() { return quaternion_; }
- QuaternionMember quaternion_;
- };
- } // namespace Sophus
- namespace Eigen {
- /// Specialization of Eigen::Map for ``RxSO3``; derived from RxSO3Base
- ///
- /// Allows us to wrap RxSO3 objects around POD array (e.g. external c style
- /// quaternion).
- template <class Scalar_, int Options>
- class Map<Sophus::RxSO3<Scalar_>, Options>
- : public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>> {
- public:
- using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- /// ``Base`` is friend so quaternion_nonconst can be accessed from ``Base``.
- friend class Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_>, Options>>;
- // LCOV_EXCL_START
- SOPHUS_INHERIT_ASSIGNMENT_OPERATORS(Map);
- // LCOV_EXCL_STOP
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar* coeffs) : quaternion_(coeffs) {}
- /// Accessor of quaternion.
- ///
- SOPHUS_FUNC
- Map<Eigen::Quaternion<Scalar>, Options> const& quaternion() const {
- return quaternion_;
- }
- protected:
- SOPHUS_FUNC Map<Eigen::Quaternion<Scalar>, Options>& quaternion_nonconst() {
- return quaternion_;
- }
- Map<Eigen::Quaternion<Scalar>, Options> quaternion_;
- };
- /// Specialization of Eigen::Map for ``RxSO3 const``; derived from RxSO3Base.
- ///
- /// Allows us to wrap RxSO3 objects around POD array (e.g. external c style
- /// quaternion).
- template <class Scalar_, int Options>
- class Map<Sophus::RxSO3<Scalar_> const, Options>
- : public Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>> {
- public:
- using Base = Sophus::RxSO3Base<Map<Sophus::RxSO3<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC
- Map(Scalar const* coeffs) : quaternion_(coeffs) {}
- /// Accessor of quaternion.
- ///
- SOPHUS_FUNC
- Map<Eigen::Quaternion<Scalar> const, Options> const& quaternion() const {
- return quaternion_;
- }
- protected:
- Map<Eigen::Quaternion<Scalar> const, Options> const quaternion_;
- };
- } // namespace Eigen
- #endif /// SOPHUS_RXSO3_HPP
|