123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660 |
- /// @file
- /// Direct product R X SO(2) - rotation and scaling in 2d.
- #ifndef SOPHUS_RXSO2_HPP
- #define SOPHUS_RXSO2_HPP
- #include "so2.hpp"
- namespace Sophus {
- template <class Scalar_, int Options = 0>
- class RxSO2;
- using RxSO2d = RxSO2<double>;
- using RxSO2f = RxSO2<float>;
- } // namespace Sophus
- namespace Eigen {
- namespace internal {
- template <class Scalar_, int Options_>
- struct traits<Sophus::RxSO2<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using ComplexType = Sophus::Vector2<Scalar, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::RxSO2<Scalar_>, Options_>>
- : traits<Sophus::RxSO2<Scalar_, Options_>> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using ComplexType = Map<Sophus::Vector2<Scalar>, Options>;
- };
- template <class Scalar_, int Options_>
- struct traits<Map<Sophus::RxSO2<Scalar_> const, Options_>>
- : traits<Sophus::RxSO2<Scalar_, Options_> const> {
- static constexpr int Options = Options_;
- using Scalar = Scalar_;
- using ComplexType = Map<Sophus::Vector2<Scalar> const, Options>;
- };
- } // namespace internal
- } // namespace Eigen
- namespace Sophus {
- /// RxSO2 base type - implements RxSO2 class but is storage agnostic
- ///
- /// This class implements the group ``R+ x SO(2)``, the direct product of the
- /// group of positive scalar 2x2 matrices (= isomorph to the positive
- /// real numbers) and the two-dimensional special orthogonal group SO(2).
- /// Geometrically, it is the group of rotation and scaling in two dimensions.
- /// As a matrix groups, R+ x SO(2) consists of matrices of the form ``s * R``
- /// where ``R`` is an orthogonal matrix with ``det(R) = 1`` and ``s > 0``
- /// being a positive real number. In particular, it has the following form:
- ///
- /// | s * cos(theta) s * -sin(theta) |
- /// | s * sin(theta) s * cos(theta) |
- ///
- /// where ``theta`` being the rotation angle. Internally, it is represented by
- /// the first column of the rotation matrix, or in other words by a non-zero
- /// complex number.
- ///
- /// R+ x SO(2) is not compact, but a commutative group. First it is not compact
- /// since the scale factor is not bound. Second it is commutative since
- /// ``sR(alpha, s1) * sR(beta, s2) = sR(beta, s2) * sR(alpha, s1)``, simply
- /// because ``alpha + beta = beta + alpha`` and ``s1 * s2 = s2 * s1`` with
- /// ``alpha`` and ``beta`` being rotation angles and ``s1``, ``s2`` being scale
- /// factors.
- ///
- /// This class has the explicit class invariant that the scale ``s`` is not
- /// too close to zero. Strictly speaking, it must hold that:
- ///
- /// ``complex().norm() >= Constants::epsilon()``.
- ///
- /// In order to obey this condition, group multiplication is implemented with
- /// saturation such that a product always has a scale which is equal or greater
- /// this threshold.
- template <class Derived>
- class RxSO2Base {
- public:
- static constexpr int Options = Eigen::internal::traits<Derived>::Options;
- using Scalar = typename Eigen::internal::traits<Derived>::Scalar;
- using ComplexType = typename Eigen::internal::traits<Derived>::ComplexType;
- using ComplexTemporaryType = Sophus::Vector2<Scalar, Options>;
- /// Degrees of freedom of manifold, number of dimensions in tangent space
- /// (one for rotation and one for scaling).
- static int constexpr DoF = 2;
- /// Number of internal parameters used (complex number is a tuple).
- static int constexpr num_parameters = 2;
- /// Group transformations are 2x2 matrices.
- static int constexpr N = 2;
- using Transformation = Matrix<Scalar, N, N>;
- using Point = Vector2<Scalar>;
- using HomogeneousPoint = Vector3<Scalar>;
- using Line = ParametrizedLine2<Scalar>;
- using Tangent = Vector<Scalar, DoF>;
- using Adjoint = Matrix<Scalar, DoF, DoF>;
- /// For binary operations the return type is determined with the
- /// ScalarBinaryOpTraits feature of Eigen. This allows mixing concrete and Map
- /// types, as well as other compatible scalar types such as Ceres::Jet and
- /// double scalars with RxSO2 operations.
- template <typename OtherDerived>
- using ReturnScalar = typename Eigen::ScalarBinaryOpTraits<
- Scalar, typename OtherDerived::Scalar>::ReturnType;
- template <typename OtherDerived>
- using RxSO2Product = RxSO2<ReturnScalar<OtherDerived>>;
- template <typename PointDerived>
- using PointProduct = Vector2<ReturnScalar<PointDerived>>;
- template <typename HPointDerived>
- using HomogeneousPointProduct = Vector3<ReturnScalar<HPointDerived>>;
- /// Adjoint transformation
- ///
- /// This function return the adjoint transformation ``Ad`` of the group
- /// element ``A`` such that for all ``x`` it holds that
- /// ``hat(Ad_A * x) = A * hat(x) A^{-1}``. See hat-operator below.
- ///
- /// For RxSO(2), it simply returns the identity matrix.
- ///
- SOPHUS_FUNC Adjoint Adj() const { return Adjoint::Identity(); }
- /// Returns rotation angle.
- ///
- SOPHUS_FUNC Scalar angle() const { return SO2<Scalar>(complex()).log(); }
- /// Returns copy of instance casted to NewScalarType.
- ///
- template <class NewScalarType>
- SOPHUS_FUNC RxSO2<NewScalarType> cast() const {
- return RxSO2<NewScalarType>(complex().template cast<NewScalarType>());
- }
- /// This provides unsafe read/write access to internal data. RxSO(2) is
- /// represented by a complex number (two parameters). When using direct
- /// write access, the user needs to take care of that the complex number is
- /// not set close to zero.
- ///
- /// Note: The first parameter represents the real part, while the
- /// second parameter represent the imaginary part.
- ///
- SOPHUS_FUNC Scalar* data() { return complex_nonconst().data(); }
- /// Const version of data() above.
- ///
- SOPHUS_FUNC Scalar const* data() const { return complex().data(); }
- /// Returns group inverse.
- ///
- SOPHUS_FUNC RxSO2<Scalar> inverse() const {
- Scalar squared_scale = complex().squaredNorm();
- return RxSO2<Scalar>(complex().x() / squared_scale,
- -complex().y() / squared_scale);
- }
- /// Logarithmic map
- ///
- /// Computes the logarithm, the inverse of the group exponential which maps
- /// element of the group (scaled rotation matrices) to elements of the tangent
- /// space (rotation-vector plus logarithm of scale factor).
- ///
- /// To be specific, this function computes ``vee(logmat(.))`` with
- /// ``logmat(.)`` being the matrix logarithm and ``vee(.)`` the vee-operator
- /// of RxSO2.
- ///
- SOPHUS_FUNC Tangent log() const {
- using std::log;
- Tangent theta_sigma;
- theta_sigma[1] = log(scale());
- theta_sigma[0] = SO2<Scalar>(complex()).log();
- return theta_sigma;
- }
- /// Returns 2x2 matrix representation of the instance.
- ///
- /// For RxSO2, the matrix representation is an scaled orthogonal matrix ``sR``
- /// with ``det(R)=s^2``, thus a scaled rotation matrix ``R`` with scale
- /// ``s``.
- ///
- SOPHUS_FUNC Transformation matrix() const {
- Transformation sR;
- // clang-format off
- sR << complex()[0], -complex()[1],
- complex()[1], complex()[0];
- // clang-format on
- return sR;
- }
- /// Assignment operator.
- ///
- SOPHUS_FUNC RxSO2Base& operator=(RxSO2Base const& other) = default;
- /// Assignment-like operator from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC RxSO2Base<Derived>& operator=(
- RxSO2Base<OtherDerived> const& other) {
- complex_nonconst() = other.complex();
- return *this;
- }
- /// Group multiplication, which is rotation concatenation and scale
- /// multiplication.
- ///
- /// Note: This function performs saturation for products close to zero in
- /// order to ensure the class invariant.
- ///
- template <typename OtherDerived>
- SOPHUS_FUNC RxSO2Product<OtherDerived> operator*(
- RxSO2Base<OtherDerived> const& other) const {
- using ResultT = ReturnScalar<OtherDerived>;
- Scalar lhs_real = complex().x();
- Scalar lhs_imag = complex().y();
- typename OtherDerived::Scalar const& rhs_real = other.complex().x();
- typename OtherDerived::Scalar const& rhs_imag = other.complex().y();
- /// complex multiplication
- typename RxSO2Product<OtherDerived>::ComplexType result_complex(
- lhs_real * rhs_real - lhs_imag * rhs_imag,
- lhs_real * rhs_imag + lhs_imag * rhs_real);
- const ResultT squared_scale = result_complex.squaredNorm();
- if (squared_scale <
- Constants<ResultT>::epsilon() * Constants<ResultT>::epsilon()) {
- /// Saturation to ensure class invariant.
- result_complex.normalize();
- result_complex *= Constants<ResultT>::epsilon();
- }
- return RxSO2Product<OtherDerived>(result_complex);
- }
- /// Group action on 2-points.
- ///
- /// This function rotates a 2 dimensional point ``p`` by the SO2 element
- /// ``bar_R_foo`` (= rotation matrix) and scales it by the scale factor ``s``:
- ///
- /// ``p_bar = s * (bar_R_foo * p_foo)``.
- ///
- template <typename PointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<PointDerived, 2>::value>::type>
- SOPHUS_FUNC PointProduct<PointDerived> operator*(
- Eigen::MatrixBase<PointDerived> const& p) const {
- return matrix() * p;
- }
- /// Group action on homogeneous 2-points. See above for more details.
- ///
- template <typename HPointDerived,
- typename = typename std::enable_if<
- IsFixedSizeVector<HPointDerived, 3>::value>::type>
- SOPHUS_FUNC HomogeneousPointProduct<HPointDerived> operator*(
- Eigen::MatrixBase<HPointDerived> const& p) const {
- const auto rsp = *this * p.template head<2>();
- return HomogeneousPointProduct<HPointDerived>(rsp(0), rsp(1), p(2));
- }
- /// Group action on lines.
- ///
- /// This function rotates a parameterized line ``l(t) = o + t * d`` by the SO2
- /// element and scales it by the scale factor
- ///
- /// Origin ``o`` is rotated and scaled
- /// Direction ``d`` is rotated (preserving it's norm)
- ///
- SOPHUS_FUNC Line operator*(Line const& l) const {
- return Line((*this) * l.origin(), (*this) * l.direction() / scale());
- }
- /// In-place group multiplication. This method is only valid if the return
- /// type of the multiplication is compatible with this SO2's Scalar type.
- ///
- /// Note: This function performs saturation for products close to zero in
- /// order to ensure the class invariant.
- ///
- template <typename OtherDerived,
- typename = typename std::enable_if<
- std::is_same<Scalar, ReturnScalar<OtherDerived>>::value>::type>
- SOPHUS_FUNC RxSO2Base<Derived>& operator*=(
- RxSO2Base<OtherDerived> const& other) {
- *static_cast<Derived*>(this) = *this * other;
- return *this;
- }
- /// Returns internal parameters of RxSO(2).
- ///
- /// It returns (c[0], c[1]), with c being the complex number.
- ///
- SOPHUS_FUNC Sophus::Vector<Scalar, num_parameters> params() const {
- return complex();
- }
- /// Sets non-zero complex
- ///
- /// Precondition: ``z`` must not be close to zero.
- SOPHUS_FUNC void setComplex(Vector2<Scalar> const& z) {
- SOPHUS_ENSURE(z.squaredNorm() > Constants<Scalar>::epsilon() *
- Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon.");
- static_cast<Derived*>(this)->complex_nonconst() = z;
- }
- /// Accessor of complex.
- ///
- SOPHUS_FUNC ComplexType const& complex() const {
- return static_cast<Derived const*>(this)->complex();
- }
- /// Returns rotation matrix.
- ///
- SOPHUS_FUNC Transformation rotationMatrix() const {
- ComplexTemporaryType norm_quad = complex();
- norm_quad.normalize();
- return SO2<Scalar>(norm_quad).matrix();
- }
- /// Returns scale.
- ///
- SOPHUS_FUNC
- Scalar scale() const { return complex().norm(); }
- /// Setter of rotation angle, leaves scale as is.
- ///
- SOPHUS_FUNC void setAngle(Scalar const& theta) { setSO2(SO2<Scalar>(theta)); }
- /// Setter of complex using rotation matrix ``R``, leaves scale as is.
- ///
- /// Precondition: ``R`` must be orthogonal with determinant of one.
- ///
- SOPHUS_FUNC void setRotationMatrix(Transformation const& R) {
- setSO2(SO2<Scalar>(R));
- }
- /// Sets scale and leaves rotation as is.
- ///
- SOPHUS_FUNC void setScale(Scalar const& scale) {
- using std::sqrt;
- complex_nonconst().normalize();
- complex_nonconst() *= scale;
- }
- /// Setter of complex number using scaled rotation matrix ``sR``.
- ///
- /// Precondition: The 2x2 matrix must be "scaled orthogonal"
- /// and have a positive determinant.
- ///
- SOPHUS_FUNC void setScaledRotationMatrix(Transformation const& sR) {
- SOPHUS_ENSURE(isScaledOrthogonalAndPositive(sR),
- "sR must be scaled orthogonal:\n %", sR);
- complex_nonconst() = sR.col(0);
- }
- /// Setter of SO(2) rotations, leaves scale as is.
- ///
- SOPHUS_FUNC void setSO2(SO2<Scalar> const& so2) {
- using std::sqrt;
- Scalar saved_scale = scale();
- complex_nonconst() = so2.unit_complex();
- complex_nonconst() *= saved_scale;
- }
- SOPHUS_FUNC SO2<Scalar> so2() const { return SO2<Scalar>(complex()); }
- protected:
- /// Mutator of complex is private to ensure class invariant.
- ///
- SOPHUS_FUNC ComplexType& complex_nonconst() {
- return static_cast<Derived*>(this)->complex_nonconst();
- }
- };
- /// RxSO2 using storage; derived from RxSO2Base.
- template <class Scalar_, int Options>
- class RxSO2 : public RxSO2Base<RxSO2<Scalar_, Options>> {
- public:
- using Base = RxSO2Base<RxSO2<Scalar_, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using ComplexMember = Eigen::Matrix<Scalar, 2, 1, Options>;
- /// ``Base`` is friend so complex_nonconst can be accessed from ``Base``.
- friend class RxSO2Base<RxSO2<Scalar_, Options>>;
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- /// Default constructor initializes complex number to identity rotation and
- /// scale to 1.
- ///
- SOPHUS_FUNC RxSO2() : complex_(Scalar(1), Scalar(0)) {}
- /// Copy constructor
- ///
- SOPHUS_FUNC RxSO2(RxSO2 const& other) = default;
- /// Copy-like constructor from OtherDerived.
- ///
- template <class OtherDerived>
- SOPHUS_FUNC RxSO2(RxSO2Base<OtherDerived> const& other)
- : complex_(other.complex()) {}
- /// Constructor from scaled rotation matrix
- ///
- /// Precondition: rotation matrix need to be scaled orthogonal with
- /// determinant of ``s^2``.
- ///
- SOPHUS_FUNC explicit RxSO2(Transformation const& sR) {
- this->setScaledRotationMatrix(sR);
- }
- /// Constructor from scale factor and rotation matrix ``R``.
- ///
- /// Precondition: Rotation matrix ``R`` must to be orthogonal with determinant
- /// of 1 and ``scale`` must to be close to zero.
- ///
- SOPHUS_FUNC RxSO2(Scalar const& scale, Transformation const& R)
- : RxSO2((scale * SO2<Scalar>(R).unit_complex()).eval()) {}
- /// Constructor from scale factor and SO2
- ///
- /// Precondition: ``scale`` must be close to zero.
- ///
- SOPHUS_FUNC RxSO2(Scalar const& scale, SO2<Scalar> const& so2)
- : RxSO2((scale * so2.unit_complex()).eval()) {}
- /// Constructor from complex number.
- ///
- /// Precondition: complex number must not be close to zero.
- ///
- SOPHUS_FUNC explicit RxSO2(Vector2<Scalar> const& z) : complex_(z) {
- SOPHUS_ENSURE(complex_.squaredNorm() >= Constants<Scalar>::epsilon() *
- Constants<Scalar>::epsilon(),
- "Scale factor must be greater-equal epsilon: % vs %",
- complex_.squaredNorm(),
- Constants<Scalar>::epsilon() * Constants<Scalar>::epsilon());
- }
- /// Constructor from complex number.
- ///
- /// Precondition: complex number must not be close to zero.
- ///
- SOPHUS_FUNC explicit RxSO2(Scalar const& real, Scalar const& imag)
- : RxSO2(Vector2<Scalar>(real, imag)) {}
- /// Accessor of complex.
- ///
- SOPHUS_FUNC ComplexMember const& complex() const { return complex_; }
- /// Returns derivative of exp(x).matrix() wrt. ``x_i at x=0``.
- ///
- SOPHUS_FUNC static Transformation Dxi_exp_x_matrix_at_0(int i) {
- return generator(i);
- }
- /// Group exponential
- ///
- /// This functions takes in an element of tangent space (= rotation angle
- /// plus logarithm of scale) and returns the corresponding element of the
- /// group RxSO2.
- ///
- /// To be more specific, this function computes ``expmat(hat(theta))``
- /// with ``expmat(.)`` being the matrix exponential and ``hat(.)`` being the
- /// hat()-operator of RSO2.
- ///
- SOPHUS_FUNC static RxSO2<Scalar> exp(Tangent const& a) {
- using std::exp;
- Scalar const theta = a[0];
- Scalar const sigma = a[1];
- Scalar s = exp(sigma);
- Vector2<Scalar> z = SO2<Scalar>::exp(theta).unit_complex();
- z *= s;
- return RxSO2<Scalar>(z);
- }
- /// Returns the ith infinitesimal generators of ``R+ x SO(2)``.
- ///
- /// The infinitesimal generators of RxSO2 are:
- ///
- /// ```
- /// | 0 -1 |
- /// G_0 = | 1 0 |
- ///
- /// | 1 0 |
- /// G_1 = | 0 1 |
- /// ```
- ///
- /// Precondition: ``i`` must be 0, or 1.
- ///
- SOPHUS_FUNC static Transformation generator(int i) {
- SOPHUS_ENSURE(i >= 0 && i <= 1, "i should be 0 or 1.");
- Tangent e;
- e.setZero();
- e[i] = Scalar(1);
- return hat(e);
- }
- /// hat-operator
- ///
- /// It takes in the 2-vector representation ``a`` (= rotation angle plus
- /// logarithm of scale) and returns the corresponding matrix representation
- /// of Lie algebra element.
- ///
- /// Formally, the hat()-operator of RxSO2 is defined as
- ///
- /// ``hat(.): R^2 -> R^{2x2}, hat(a) = sum_i a_i * G_i`` (for i=0,1,2)
- ///
- /// with ``G_i`` being the ith infinitesimal generator of RxSO2.
- ///
- /// The corresponding inverse is the vee()-operator, see below.
- ///
- SOPHUS_FUNC static Transformation hat(Tangent const& a) {
- Transformation A;
- // clang-format off
- A << a(1), -a(0),
- a(0), a(1);
- // clang-format on
- return A;
- }
- /// Lie bracket
- ///
- /// It computes the Lie bracket of RxSO(2). To be more specific, it computes
- ///
- /// ``[omega_1, omega_2]_rxso2 := vee([hat(omega_1), hat(omega_2)])``
- ///
- /// with ``[A,B] := AB-BA`` being the matrix commutator, ``hat(.)`` the
- /// hat()-operator and ``vee(.)`` the vee()-operator of RxSO2.
- ///
- SOPHUS_FUNC static Tangent lieBracket(Tangent const&, Tangent const&) {
- Vector2<Scalar> res;
- res.setZero();
- return res;
- }
- /// Draw uniform sample from RxSO(2) manifold.
- ///
- /// The scale factor is drawn uniformly in log2-space from [-1, 1],
- /// hence the scale is in [0.5, 2)].
- ///
- template <class UniformRandomBitGenerator>
- static RxSO2 sampleUniform(UniformRandomBitGenerator& generator) {
- std::uniform_real_distribution<Scalar> uniform(Scalar(-1), Scalar(1));
- using std::exp2;
- return RxSO2(exp2(uniform(generator)),
- SO2<Scalar>::sampleUniform(generator));
- }
- /// vee-operator
- ///
- /// It takes the 2x2-matrix representation ``Omega`` and maps it to the
- /// corresponding vector representation of Lie algebra.
- ///
- /// This is the inverse of the hat()-operator, see above.
- ///
- /// Precondition: ``Omega`` must have the following structure:
- ///
- /// | d -x |
- /// | x d |
- ///
- SOPHUS_FUNC static Tangent vee(Transformation const& Omega) {
- using std::abs;
- return Tangent(Omega(1, 0), Omega(0, 0));
- }
- protected:
- SOPHUS_FUNC ComplexMember& complex_nonconst() { return complex_; }
- ComplexMember complex_;
- };
- } // namespace Sophus
- namespace Eigen {
- /// Specialization of Eigen::Map for ``RxSO2``; derived from RxSO2Base.
- ///
- /// Allows us to wrap RxSO2 objects around POD array (e.g. external z style
- /// complex).
- template <class Scalar_, int Options>
- class Map<Sophus::RxSO2<Scalar_>, Options>
- : public Sophus::RxSO2Base<Map<Sophus::RxSO2<Scalar_>, Options>> {
- using Base = Sophus::RxSO2Base<Map<Sophus::RxSO2<Scalar_>, Options>>;
- public:
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- /// ``Base`` is friend so complex_nonconst can be accessed from ``Base``.
- friend class Sophus::RxSO2Base<Map<Sophus::RxSO2<Scalar_>, Options>>;
- // LCOV_EXCL_START
- SOPHUS_INHERIT_ASSIGNMENT_OPERATORS(Map);
- // LCOV_EXCL_STOP
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC Map(Scalar* coeffs) : complex_(coeffs) {}
- /// Accessor of complex.
- ///
- SOPHUS_FUNC
- Map<Sophus::Vector2<Scalar>, Options> const& complex() const {
- return complex_;
- }
- protected:
- SOPHUS_FUNC Map<Sophus::Vector2<Scalar>, Options>& complex_nonconst() {
- return complex_;
- }
- Map<Sophus::Vector2<Scalar>, Options> complex_;
- };
- /// Specialization of Eigen::Map for ``RxSO2 const``; derived from RxSO2Base.
- ///
- /// Allows us to wrap RxSO2 objects around POD array (e.g. external z style
- /// complex).
- template <class Scalar_, int Options>
- class Map<Sophus::RxSO2<Scalar_> const, Options>
- : public Sophus::RxSO2Base<Map<Sophus::RxSO2<Scalar_> const, Options>> {
- public:
- using Base = Sophus::RxSO2Base<Map<Sophus::RxSO2<Scalar_> const, Options>>;
- using Scalar = Scalar_;
- using Transformation = typename Base::Transformation;
- using Point = typename Base::Point;
- using HomogeneousPoint = typename Base::HomogeneousPoint;
- using Tangent = typename Base::Tangent;
- using Adjoint = typename Base::Adjoint;
- using Base::operator*=;
- using Base::operator*;
- SOPHUS_FUNC
- Map(Scalar const* coeffs) : complex_(coeffs) {}
- /// Accessor of complex.
- ///
- SOPHUS_FUNC
- Map<Sophus::Vector2<Scalar> const, Options> const& complex() const {
- return complex_;
- }
- protected:
- Map<Sophus::Vector2<Scalar> const, Options> const complex_;
- };
- } // namespace Eigen
- #endif /// SOPHUS_RXSO2_HPP
|