1234567891011121314151617181920212223242526272829303132333435363738 |
- /// @file
- /// Interpolation for Lie groups.
- #ifndef SOPHUS_INTERPOLATE_HPP
- #define SOPHUS_INTERPOLATE_HPP
- #include <Eigen/Eigenvalues>
- #include "interpolate_details.hpp"
- namespace Sophus {
- /// This function interpolates between two Lie group elements ``foo_T_bar``
- /// and ``foo_T_baz`` with an interpolation factor of ``alpha`` in [0, 1].
- ///
- /// It returns a pose ``foo_T_quiz`` with ``quiz`` being a frame between ``bar``
- /// and ``baz``. If ``alpha=0`` it returns ``foo_T_bar``. If it is 1, it returns
- /// ``foo_T_bar``.
- ///
- /// (Since interpolation on Lie groups is inverse-invariant, we can equivalently
- /// think of the input arguments as being ``bar_T_foo``, ``baz_T_foo`` and the
- /// return value being ``quiz_T_foo``.)
- ///
- /// Precondition: ``p`` must be in [0, 1].
- ///
- template <class G, class Scalar2 = typename G::Scalar>
- enable_if_t<interp_details::Traits<G>::supported, G> interpolate(
- G const& foo_T_bar, G const& foo_T_baz, Scalar2 p = Scalar2(0.5f)) {
- using Scalar = typename G::Scalar;
- Scalar inter_p(p);
- SOPHUS_ENSURE(inter_p >= Scalar(0) && inter_p <= Scalar(1),
- "p (%) must in [0, 1].");
- return foo_T_bar * G::exp(inter_p * (foo_T_bar.inverse() * foo_T_baz).log());
- }
- } // namespace Sophus
- #endif // SOPHUS_INTERPOLATE_HPP
|