123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- /// @file
- /// Transformations between poses and hyperplanes.
- #ifndef GEOMETRY_HPP
- #define GEOMETRY_HPP
- #include "se2.hpp"
- #include "se3.hpp"
- #include "so2.hpp"
- #include "so3.hpp"
- #include "types.hpp"
- namespace Sophus {
- /// Takes in a rotation ``R_foo_plane`` and returns the corresponding line
- /// normal along the y-axis (in reference frame ``foo``).
- ///
- template <class T>
- Vector2<T> normalFromSO2(SO2<T> const& R_foo_line) {
- return R_foo_line.matrix().col(1);
- }
- /// Takes in line normal in reference frame foo and constructs a corresponding
- /// rotation matrix ``R_foo_line``.
- ///
- /// Precondition: ``normal_foo`` must not be close to zero.
- ///
- template <class T>
- SO2<T> SO2FromNormal(Vector2<T> normal_foo) {
- SOPHUS_ENSURE(normal_foo.squaredNorm() > Constants<T>::epsilon(), "%",
- normal_foo.transpose());
- normal_foo.normalize();
- return SO2<T>(normal_foo.y(), -normal_foo.x());
- }
- /// Takes in a rotation ``R_foo_plane`` and returns the corresponding plane
- /// normal along the z-axis
- /// (in reference frame ``foo``).
- ///
- template <class T>
- Vector3<T> normalFromSO3(SO3<T> const& R_foo_plane) {
- return R_foo_plane.matrix().col(2);
- }
- /// Takes in plane normal in reference frame foo and constructs a corresponding
- /// rotation matrix ``R_foo_plane``.
- ///
- /// Note: The ``plane`` frame is defined as such that the normal points along
- /// the positive z-axis. One can specify hints for the x-axis and y-axis
- /// of the ``plane`` frame.
- ///
- /// Preconditions:
- /// - ``normal_foo``, ``xDirHint_foo``, ``yDirHint_foo`` must not be close to
- /// zero.
- /// - ``xDirHint_foo`` and ``yDirHint_foo`` must be approx. perpendicular.
- ///
- template <class T>
- Matrix3<T> rotationFromNormal(Vector3<T> const& normal_foo,
- Vector3<T> xDirHint_foo = Vector3<T>(T(1), T(0),
- T(0)),
- Vector3<T> yDirHint_foo = Vector3<T>(T(0), T(1),
- T(0))) {
- SOPHUS_ENSURE(xDirHint_foo.dot(yDirHint_foo) < Constants<T>::epsilon(),
- "xDirHint (%) and yDirHint (%) must be perpendicular.",
- xDirHint_foo.transpose(), yDirHint_foo.transpose());
- using std::abs;
- using std::sqrt;
- T const xDirHint_foo_sqr_length = xDirHint_foo.squaredNorm();
- T const yDirHint_foo_sqr_length = yDirHint_foo.squaredNorm();
- T const normal_foo_sqr_length = normal_foo.squaredNorm();
- SOPHUS_ENSURE(xDirHint_foo_sqr_length > Constants<T>::epsilon(), "%",
- xDirHint_foo.transpose());
- SOPHUS_ENSURE(yDirHint_foo_sqr_length > Constants<T>::epsilon(), "%",
- yDirHint_foo.transpose());
- SOPHUS_ENSURE(normal_foo_sqr_length > Constants<T>::epsilon(), "%",
- normal_foo.transpose());
- Matrix3<T> basis_foo;
- basis_foo.col(2) = normal_foo;
- if (abs(xDirHint_foo_sqr_length - T(1)) > Constants<T>::epsilon()) {
- xDirHint_foo.normalize();
- }
- if (abs(yDirHint_foo_sqr_length - T(1)) > Constants<T>::epsilon()) {
- yDirHint_foo.normalize();
- }
- if (abs(normal_foo_sqr_length - T(1)) > Constants<T>::epsilon()) {
- basis_foo.col(2).normalize();
- }
- T abs_x_dot_z = abs(basis_foo.col(2).dot(xDirHint_foo));
- T abs_y_dot_z = abs(basis_foo.col(2).dot(yDirHint_foo));
- if (abs_x_dot_z < abs_y_dot_z) {
- // basis_foo.z and xDirHint are far from parallel.
- basis_foo.col(1) = basis_foo.col(2).cross(xDirHint_foo).normalized();
- basis_foo.col(0) = basis_foo.col(1).cross(basis_foo.col(2));
- } else {
- // basis_foo.z and yDirHint are far from parallel.
- basis_foo.col(0) = yDirHint_foo.cross(basis_foo.col(2)).normalized();
- basis_foo.col(1) = basis_foo.col(2).cross(basis_foo.col(0));
- }
- T det = basis_foo.determinant();
- // sanity check
- SOPHUS_ENSURE(abs(det - T(1)) < Constants<T>::epsilon(),
- "Determinant of basis is not 1, but %. Basis is \n%\n", det,
- basis_foo);
- return basis_foo;
- }
- /// Takes in plane normal in reference frame foo and constructs a corresponding
- /// rotation matrix ``R_foo_plane``.
- ///
- /// See ``rotationFromNormal`` for details.
- ///
- template <class T>
- SO3<T> SO3FromNormal(Vector3<T> const& normal_foo) {
- return SO3<T>(rotationFromNormal(normal_foo));
- }
- /// Returns a line (wrt. to frame ``foo``), given a pose of the ``line`` in
- /// reference frame ``foo``.
- ///
- /// Note: The plane is defined by X-axis of the ``line`` frame.
- ///
- template <class T>
- Line2<T> lineFromSE2(SE2<T> const& T_foo_line) {
- return Line2<T>(normalFromSO2(T_foo_line.so2()), T_foo_line.translation());
- }
- /// Returns the pose ``T_foo_line``, given a line in reference frame ``foo``.
- ///
- /// Note: The line is defined by X-axis of the frame ``line``.
- ///
- template <class T>
- SE2<T> SE2FromLine(Line2<T> const& line_foo) {
- T const d = line_foo.offset();
- Vector2<T> const n = line_foo.normal();
- SO2<T> const R_foo_plane = SO2FromNormal(n);
- return SE2<T>(R_foo_plane, -d * n);
- }
- /// Returns a plane (wrt. to frame ``foo``), given a pose of the ``plane`` in
- /// reference frame ``foo``.
- ///
- /// Note: The plane is defined by XY-plane of the frame ``plane``.
- ///
- template <class T>
- Plane3<T> planeFromSE3(SE3<T> const& T_foo_plane) {
- return Plane3<T>(normalFromSO3(T_foo_plane.so3()), T_foo_plane.translation());
- }
- /// Returns the pose ``T_foo_plane``, given a plane in reference frame ``foo``.
- ///
- /// Note: The plane is defined by XY-plane of the frame ``plane``.
- ///
- template <class T>
- SE3<T> SE3FromPlane(Plane3<T> const& plane_foo) {
- T const d = plane_foo.offset();
- Vector3<T> const n = plane_foo.normal();
- SO3<T> const R_foo_plane = SO3FromNormal(n);
- return SE3<T>(R_foo_plane, -d * n);
- }
- /// Takes in a hyperplane and returns unique representation by ensuring that the
- /// ``offset`` is not negative.
- ///
- template <class T, int N>
- Eigen::Hyperplane<T, N> makeHyperplaneUnique(
- Eigen::Hyperplane<T, N> const& plane) {
- if (plane.offset() >= 0) {
- return plane;
- }
- return Eigen::Hyperplane<T, N>(-plane.normal(), -plane.offset());
- }
- } // namespace Sophus
- #endif // GEOMETRY_HPP
|