avia_debug.yaml 4.1 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. common:
  2. lid_topic: "/livox/lidar"
  3. imu_topic: "/handsfree/imu"
  4. gnss_topic: /gps/fix #"/imu/data"
  5. time_sync_en: false # ONLY turn on when external time synchronization is really not possible
  6. preprocess:
  7. lidar_type: 1 # 1 for Livox serials LiDAR, 2 for Velodyne LiDAR, 3 for ouster LiDAR,
  8. scan_line: 6
  9. blind: 4
  10. mapping:
  11. acc_cov: 0.1
  12. gyr_cov: 0.1
  13. b_acc_cov: 0.0001
  14. b_gyr_cov: 0.0001
  15. fov_degree: 70
  16. det_range: 450.0
  17. extrinsic_est_en: false # true: enable the online estimation of IMU-LiDAR extrinsic
  18. extrinsic_T: [ 0.008, 0.01, -0.08 ]
  19. extrinsic_R: [ 1, 0, 0,
  20. 0, 1, 0,
  21. 0, 0, 1]
  22. publish:
  23. path_en: true
  24. scan_publish_en: true # false: close all the point cloud output
  25. dense_publish_en: true # false: low down the points number in a global-frame point clouds scan.
  26. scan_bodyframe_pub_en: true # true: output the point cloud scans in IMU-body-frame
  27. pcd_save:
  28. pcd_save_en: true
  29. interval: -1 # how many LiDAR frames saved in each pcd file;
  30. # -1 : all frames will be saved in ONE pcd file, may lead to memory crash when having too much frames.
  31. # voxel filter paprams
  32. odometrySurfLeafSize: 0.2 # default: 0.4 - outdoor, 0.2 - indoor
  33. mappingCornerLeafSize: 0.1 # default: 0.2 - outdoor, 0.1 - indoor
  34. mappingSurfLeafSize: 0.2 # default: 0.4 - outdoor, 0.2 - indoor
  35. # robot motion constraint (in case you are using a 2D robot)
  36. z_tollerance: 1000 # meters
  37. rotation_tollerance: 1000 # radians
  38. # CPU Params
  39. numberOfCores: 4 # number of cores for mapping optimization
  40. mappingProcessInterval: 0.15 # seconds, regulate mapping frequency
  41. # Surrounding map
  42. surroundingkeyframeAddingDistThreshold: 1.0 # meters, regulate keyframe adding threshold 选取关键帧的距离阈值
  43. surroundingkeyframeAddingAngleThreshold: 0.2 # radians, regulate keyframe adding threshold 角度阈值
  44. surroundingKeyframeDensity: 2.0 # meters, downsample surrounding keyframe poses no_used
  45. surroundingKeyframeSearchRadius: 50.0 # meters, within n meters scan-to-map optimization (when loop closure disabled) no_used
  46. # Loop closure
  47. loopClosureEnableFlag: true
  48. loopClosureFrequency: 4.0 # Hz, regulate loop closure constraint add frequency
  49. surroundingKeyframeSize: 50 # submap size (when loop closure enabled)
  50. historyKeyframeSearchRadius: 3.0 # meters, key frame that is within n meters from current pose will be considerd for loop closure
  51. historyKeyframeSearchTimeDiff: 30.0 # seconds, key frame that is n seconds older will be considered for loop closure
  52. historyKeyframeSearchNum: 20 # number of hostory key frames will be fused into a submap for loop closure
  53. historyKeyframeFitnessScore: 0.3 # icp threshold, the smaller the better alignment
  54. # GPS Settings
  55. useImuHeadingInitialization: false # if using GPS data, set to "true"
  56. useGpsElevation: false # if GPS elevation is bad, set to "false"
  57. gpsCovThreshold: 2.0 # m^2, threshold for using GPS data
  58. poseCovThreshold: 0 #25.0 # m^2, threshold for using GPS data 位姿协方差阈值 from isam2
  59. # Visualization
  60. globalMapVisualizationSearchRadius: 100.0 # meters, global map visualization radius, iktree submap 的搜索范围
  61. globalMapVisualizationPoseDensity: 10 # meters, global map visualization keyframe density
  62. globalMapVisualizationLeafSize: 1.0 # meters, global map visualization cloud density
  63. # visual iktree_map
  64. visulize_IkdtreeMap: true
  65. # visual iktree_map
  66. recontructKdTree: true
  67. # Export settings
  68. savePCD: true # https://github.com/TixiaoShan/LIO-SAM/issues/3
  69. savePCDDirectory: "/fast_lio_sam_ws/src/FAST_LIO_SAM/PCD/" # in your home folder, starts and ends with "/". Warning: the code deletes "LOAM" folder then recreates it. See "mapOptimization" for implementation