KDTreeVectorOfVectorsAdaptor.h 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. /***********************************************************************
  2. * Software License Agreement (BSD License)
  3. *
  4. * Copyright 2011-16 Jose Luis Blanco (joseluisblancoc@gmail.com).
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. *
  11. * 1. Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * 2. Redistributions in binary form must reproduce the above copyright
  14. * notice, this list of conditions and the following disclaimer in the
  15. * documentation and/or other materials provided with the distribution.
  16. *
  17. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27. *************************************************************************/
  28. #pragma once
  29. #include "nanoflann.hpp"
  30. #include <vector>
  31. // ===== This example shows how to use nanoflann with these types of containers: =======
  32. //typedef std::vector<std::vector<double> > my_vector_of_vectors_t;
  33. //typedef std::vector<Eigen::VectorXd> my_vector_of_vectors_t; // This requires #include <Eigen/Dense>
  34. // =====================================================================================
  35. /** A simple vector-of-vectors adaptor for nanoflann, without duplicating the storage.
  36. * The i'th vector represents a point in the state space.
  37. *
  38. * \tparam DIM If set to >0, it specifies a compile-time fixed dimensionality for the points in the data set, allowing more compiler optimizations.
  39. * \tparam num_t The type of the point coordinates (typically, double or float).
  40. * \tparam Distance The distance metric to use: nanoflann::metric_L1, nanoflann::metric_L2, nanoflann::metric_L2_Simple, etc.
  41. * \tparam IndexType The type for indices in the KD-tree index (typically, size_t of int)
  42. */
  43. template <class VectorOfVectorsType, typename num_t = double, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = size_t>
  44. struct KDTreeVectorOfVectorsAdaptor
  45. {
  46. typedef KDTreeVectorOfVectorsAdaptor<VectorOfVectorsType,num_t,DIM,Distance> self_t;
  47. typedef typename Distance::template traits<num_t,self_t>::distance_t metric_t;
  48. typedef nanoflann::KDTreeSingleIndexAdaptor< metric_t,self_t,DIM,IndexType> index_t;
  49. index_t* index; //! The kd-tree index for the user to call its methods as usual with any other FLANN index.
  50. /// Constructor: takes a const ref to the vector of vectors object with the data points
  51. KDTreeVectorOfVectorsAdaptor(const size_t /* dimensionality */, const VectorOfVectorsType &mat, const int leaf_max_size = 10) : m_data(mat)
  52. {
  53. assert(mat.size() != 0 && mat[0].size() != 0);
  54. const size_t dims = mat[0].size();
  55. if (DIM>0 && static_cast<int>(dims) != DIM)
  56. throw std::runtime_error("Data set dimensionality does not match the 'DIM' template argument");
  57. index = new index_t( static_cast<int>(dims), *this /* adaptor */, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size ) );
  58. index->buildIndex();
  59. }
  60. ~KDTreeVectorOfVectorsAdaptor() {
  61. delete index;
  62. }
  63. const VectorOfVectorsType &m_data;
  64. /** Query for the \a num_closest closest points to a given point (entered as query_point[0:dim-1]).
  65. * Note that this is a short-cut method for index->findNeighbors().
  66. * The user can also call index->... methods as desired.
  67. * \note nChecks_IGNORED is ignored but kept for compatibility with the original FLANN interface.
  68. */
  69. inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq, const int nChecks_IGNORED = 10) const
  70. {
  71. nanoflann::KNNResultSet<num_t,IndexType> resultSet(num_closest);
  72. resultSet.init(out_indices, out_distances_sq);
  73. index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
  74. }
  75. /** @name Interface expected by KDTreeSingleIndexAdaptor
  76. * @{ */
  77. const self_t & derived() const {
  78. return *this;
  79. }
  80. self_t & derived() {
  81. return *this;
  82. }
  83. // Must return the number of data points
  84. inline size_t kdtree_get_point_count() const {
  85. return m_data.size();
  86. }
  87. // Returns the dim'th component of the idx'th point in the class:
  88. inline num_t kdtree_get_pt(const size_t idx, const size_t dim) const {
  89. return m_data[idx][dim];
  90. }
  91. // Optional bounding-box computation: return false to default to a standard bbox computation loop.
  92. // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
  93. // Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
  94. template <class BBOX>
  95. bool kdtree_get_bbox(BBOX & /*bb*/) const {
  96. return false;
  97. }
  98. /** @} */
  99. }; // end of KDTreeVectorOfVectorsAdaptor