#include "point_sift_segmentation.h" #include #include void save_rgb_cloud_txt(std::string txt, pcl::PointCloud& pCloud) { std::ofstream os; os.open(txt, std::ios::out); for (int i = 0; i < pCloud.points.size(); i++) { pcl::PointXYZRGB point = pCloud.points[i]; char buf[255]; memset(buf, 0, 255); sprintf(buf, "%f %f %f %d %d %d\n", point.x, point.y, point.z, point.r, point.g, point.b); os.write(buf, strlen(buf)); } os.close(); } Point_sift_segmentation::Point_sift_segmentation(int point_size, int cls, float freq, pcl::PointXYZ minp, pcl::PointXYZ maxp) :PointSifter(point_size, cls) { m_point_num = point_size; m_cls_num = cls; m_freq = freq; m_minp = minp; m_maxp = maxp; } Error_manager Point_sift_segmentation::set_region(pcl::PointXYZ minp, pcl::PointXYZ maxp) { m_minp = minp; m_maxp = maxp; if(m_maxp.x<=m_minp.x || m_maxp.y<=m_minp.y) { return Error_manager(LOCATER_SIFT_INPUT_BOX_PARAMETER_FAILED,NORMAL, "Point sift set region invalid :m_maxp.x<=m_minp.x || m_maxp.y<=m_minp.y "); } return SUCCESS; } Point_sift_segmentation::~Point_sift_segmentation() { } Error_manager Point_sift_segmentation::init(std::string graph, std::string cpkt) { if (!Load(graph, cpkt)) { std::string error_string="pointSIFT Init ERROR:"; error_string+=LastError(); return Error_manager(LOCATER_SIFT_INIT_FAILED,NORMAL,error_string); } //创建空数据,第一次初始化后空跑 float* cloud_data = (float*)malloc(m_point_num * 3 * sizeof(float)); float* output = (float*)malloc(m_point_num * m_cls_num * sizeof(float)); if (false == Predict(cloud_data, output)) { free(cloud_data); free(output); std::string error_string="pointSIFT int first predict ERROR:"; error_string+=LastError(); return Error_manager(LOCATER_SIFT_PREDICT_FAILED,NORMAL,error_string); } else { free(cloud_data); free(output); } return SUCCESS; } #include bool Point_sift_segmentation::Create_data(pcl::PointCloud::Ptr cloud, float* output) { if (cloud->size() == 0) return false; ////������άС���� pcl::getMinMax3D(*cloud, m_minp, m_maxp); pcl::PointXYZ center; center.x = (m_minp.x + m_maxp.x) / 2.0; center.y = (m_minp.y + m_maxp.y) / 2.0; int l = int((m_maxp.x - m_minp.x) / m_freq) + 1; int w = int((m_maxp.y - m_minp.y) / m_freq) + 1; int h = int((m_maxp.z - m_minp.z) / m_freq) + 1; float* grid = (float*)malloc(l*w*h*sizeof(float)); memset(grid, 0, l*w*h*sizeof(float)); for (int i = 0; i < cloud->size(); ++i) { pcl::PointXYZ point = cloud->points[i]; int idx = (point.x - m_minp.x) / m_freq; int idy = (point.y - m_minp.y) / m_freq; int idz = (point.z - m_minp.z) / m_freq; if (idx < 0 || idy < 0 || idz < 0) continue; *(grid + idx + idy*l + idz*l*w) = i+1; } pcl::PointCloud::Ptr cloud_grid(new pcl::PointCloud); for (int i = 0; i < l*w*h; ++i) { if (*(grid + i) > 0) { int id = *(grid + i); if (id <= cloud->size()) { pcl::PointXYZ point = cloud->points[id-1]; cloud_grid->push_back(point); } } } free(grid); ////ɸѡ�� m_point_num���� pcl::PointCloud::Ptr cloud_select(new pcl::PointCloud); if (cloud_grid->size()>m_point_num) { //����˳�� ȡǰm_point_num ���� std::random_shuffle(cloud_grid->points.begin(), cloud_grid->points.end()); //����˳�� cloud_select->points.assign(cloud_grid->points.begin(), cloud_grid->points.begin() + m_point_num); } else if (cloud_grid->size() < m_point_num) { int add = m_point_num - cloud_grid->size(); if (add > cloud_grid->size()) return false; std::random_shuffle(cloud_grid->points.begin(), cloud_grid->points.end()); //����˳�� cloud_select->points.assign(cloud_grid->points.begin(), cloud_grid->points.begin() + add); cloud_select->points.insert(cloud_select->points.begin(), cloud_grid->points.begin(), cloud_grid->points.end()); } else { cloud_select->points.assign(cloud_grid->points.begin(), cloud_grid->points.end()); } if (cloud_select->points.size() != m_point_num) { LOG(ERROR) << "\tpointSIFT input select cloud is not " << m_point_num; return false; } for (int i = 0; i < m_point_num; ++i) { pcl::PointXYZ point = cloud_select->points[i]; *(output + i * 3) = (point.x-center.x) / 1000.0; *(output + i * 3+1) = (point.y-center.y) / 1000.0; *(output + i * 3+2) = point.z / 1000.0; } return true; } Error_manager Point_sift_segmentation::seg(pcl::PointCloud::Ptr cloud, std::vector::Ptr>& cloud_seg, std::string save_dir) { if(cloud->size()==0) { return Error_manager(LOCATER_SIFT_INPUT_CLOUD_EMPTY,NORMAL,"PointSift input cloud empty "); } float* data = (float*)malloc(m_point_num * 3 * sizeof(float)); float* output = (float*)malloc(m_point_num*m_cls_num*sizeof(float)); memset(data, 0, m_point_num * 3 * sizeof(float)); memset(output, 0, m_point_num*m_cls_num * sizeof(float)); LOG(INFO) << "cloud size:" << cloud->size()<<" / "<::Ptr seg(new pcl::PointCloud); for (int i = 0; i < segmentation_class_size; ++i) { seg->operator +=(*cloud_seg[i]); } static int count = 0; count = (count + 1) % m_cls_num; char buf[64] = { 0 }; sprintf(buf, "%s/SIFT_%d.txt", save_dir.c_str(), count); save_rgb_cloud_txt(buf, *seg); return SUCCESS; } bool Point_sift_segmentation::RecoveryCloud(float* output, float* cloud, std::vector::Ptr>& cloud_seg) { pcl::PointXYZ center; center.x = (m_minp.x + m_maxp.x) / 2.0; center.y = (m_minp.y + m_maxp.y) / 2.0; for (int k = 0; k < m_cls_num; ++k) { pcl::PointCloud::Ptr cloud_rgb(new pcl::PointCloud); cloud_seg.push_back(cloud_rgb); } for (int i = 0; i < m_point_num; ++i) { pcl::PointXYZ point; point.x = *(cloud + i * 3)*1000.+center.x; point.y = *(cloud + i * 3 + 1)*1000.+center.y; point.z = *(cloud + i * 3 + 2)*1000.; if (point.x > m_maxp.x || point.xm_maxp.y || point.ym_maxp.z || point.z < m_minp.z) { continue; } float* prob = output + i*m_cls_num; int cls = 0; float max = prob[0]; for (int j = 1; j < m_cls_num; j++) { if (prob[j] > max) { max = prob[j]; cls = j; } } int r = 255, g = 255, b = 255; if (cls == 1) { r = 0; b = 0; } if (cls == 2) { b = 0; g = 0; } if (cls < m_cls_num) { pcl::PointXYZRGB point_rgb; point_rgb.x = point.x; point_rgb.y = point.y; point_rgb.z = point.z; point_rgb.r = r; point_rgb.g = g; point_rgb.b = b; cloud_seg[cls]->push_back(point_rgb); } } return true; } bool Point_sift_segmentation::FilterObs(std::vector::Ptr>& cloud_seg,std::string save_dir) { /*if (cloud_seg.size() != m_cls_num) { LOG(ERROR) << "\t cloud_seg.size() != m_cls_num"; return false; }*/ const int obs_id = m_cls_num - 1; const int target_id = 1; pcl::PointCloud::Ptr obs_cloud = cloud_seg[obs_id]; if(cloud_seg.size()>0) { std::string sift_in = save_dir + "/c0.txt"; save_rgb_cloud_txt(sift_in, *cloud_seg[0]); } if(cloud_seg.size()>1) { std::string sift_in = save_dir + "/c1.txt"; save_rgb_cloud_txt(sift_in, *cloud_seg[1]); } if(cloud_seg.size()>2) { std::string sift_in = save_dir + "/c2.txt"; save_rgb_cloud_txt(sift_in, *cloud_seg[2]); } return true; /*if (obs_cloud->size() > 100) { ////ŷʽ���� pcl::search::KdTree::Ptr tree_upground(new pcl::search::KdTree); tree_upground->setInputCloud(obs_cloud); std::vector cluster_indices_upground; pcl::EuclideanClusterExtraction ec; ec.setClusterTolerance(100); // 10cm ec.setMinClusterSize(30); ec.setMaxClusterSize(10000); ec.setSearchMethod(tree_upground); ec.setInputCloud(obs_cloud); ec.extract(cluster_indices_upground); std::vector> clusters_obs; for (std::vector::const_iterator it = cluster_indices_upground.begin(); it != cluster_indices_upground.end(); ++it) { pcl::PointCloud cloud_cluster; for (std::vector::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit) cloud_cluster.push_back(obs_cloud->points[*pit]); //* cloud_cluster.width = cloud_cluster.size(); cloud_cluster.height = 1; cloud_cluster.is_dense = true; clusters_obs.push_back(cloud_cluster); } ///// �� obs ��������� std::vector > contours; for (int k = 0; k < clusters_obs.size(); ++k) { pcl::PointCloud::Ptr cloud_projected_XY(new pcl::PointCloud); pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients()); coefficients->values.resize(4); coefficients->values[0] = 0.; coefficients->values[1] = 0.; coefficients->values[2] = 1.0; coefficients->values[3] = 0.; // Create the filtering object pcl::ProjectInliers proj; proj.setModelType(pcl::SACMODEL_PLANE); proj.setInputCloud(clusters_obs[k].makeShared()); proj.setModelCoefficients(coefficients); proj.filter(*cloud_projected_XY); pcl::PointCloud::Ptr cloud_convexhull(new pcl::PointCloud); pcl::ConvexHull cconvexhull; cconvexhull.setInputCloud(cloud_projected_XY); cconvexhull.setDimension(2); cconvexhull.reconstruct(*cloud_convexhull); if (cloud_convexhull->size() > 3) { std::vector contour; for (int j = 0; j < cloud_convexhull->size(); ++j) { pcl::PointXYZRGB point = cloud_convexhull->points[j]; cv::Point2f pt(point.x, point.y); contour.push_back(pt); } contours.push_back(contour); } } //// ��Ŀ������ pcl::PointCloud::Ptr cloud_target(new pcl::PointCloud); for (int i = 0; i < cloud_seg[target_id]->size(); ++i) { pcl::PointXYZRGB point = cloud_seg[target_id]->points[i]; cv::Point2f pt(point.x, point.y); bool valid = true; for (int n = 0; n < contours.size(); ++n) { if (cv::pointPolygonTest(contours[n], pt, true)>-300.) { valid = false; break; } } if (valid) { cloud_target->push_back(point); } } cloud_seg[target_id] = cloud_target; char buf[255] = { 0 }; static int count = 0; sprintf(buf, "%s/target_%d.txt", save_dir.c_str(), count++%m_cls_num); save_rgb_cloud_txt(buf, *cloud_target); } return true;*/ }