123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486 |
- //
- // Created by zx on 22-12-1.
- //
- #include "loaded_mpc.h"
- #include <chrono>
- #include <cppad/cppad.hpp>
- #include <cppad/ipopt/solve.hpp>
- size_t delay = 1; // 预判发送到执行的延迟,即几个周期的时间
- size_t down_count = 3;//下发前多少步
- class FG_eval_half_agv {
- public:
- // Fitted polynomial coefficients
- Eigen::VectorXd m_coeffs; //曲线方程
- Eigen::VectorXd m_statu; //当前状态
- Eigen::VectorXd m_condition; //搜索条件参数
- size_t delay;
- size_t down_count = 3;//下发前多少步
- size_t N;
- size_t nx = 0;
- size_t ny = nx;
- size_t nth = ny ;
- size_t nv = nth ;
- size_t ndlt = nv ;
- size_t nobs = ndlt ;
- bool directY_;
- FG_eval_half_agv(Eigen::VectorXd coeffs, Eigen::VectorXd statu, Eigen::VectorXd condition,bool directY,int steps) {
- //优化考虑后面多少步
- N=steps;
- nx = 0;
- ny = nx + N;
- nth = ny + N;
- nv = nth + N;
- ndlt = nv + N;
- nobs = ndlt + N;
- m_coeffs = coeffs;
- m_statu = statu;
- m_condition = condition;
- directY_=directY;
- }
- typedef CPPAD_TESTVECTOR(CppAD::AD<double>) ADvector;
- void operator()(ADvector &fg, const ADvector &vars) {
- fg[0] = 0;
- double dt = m_condition[0];
- double ref_v = m_condition[1];
- double obs_w = m_condition[2];
- double obs_h = m_condition[3];
- double target_x = m_condition[4];
- double target_y = m_condition[5];
- double v = m_statu[0];
- double delta = m_statu[1];
- // Weights for how "important" each cost is - can be tuned
- const double y_cost_weight = 1000;
- const double th_cost_weight = 4000;
- const double v_cost_weight = 5000;
- const double vth_cost_weight = 1000;
- const double a_cost_weight = 1;
- const double ath_cost_weight = 10;
- const double obs_distance_weight = 5000.0;
- // Cost for CTE, psi error and velocity
- for (int t = 0; t < N; t++) {
- CppAD::AD<double> xt = vars[nx + t];
- CppAD::AD<double> fx = m_coeffs[0] + m_coeffs[1] * xt + m_coeffs[2] * pow(xt, 2) + m_coeffs[3] * pow(xt, 3);
- fg[0] += y_cost_weight * CppAD::pow(vars[ny + t] - fx, 2);
- //fg[0]+=v_cost_weight*(CppAD::pow(vars[nx+t]-target_x,2)+CppAD::pow(vars[ny+t]-target_y,2));
- //目标速度loss
- fg[0] += v_cost_weight * CppAD::pow(vars[nv + t] - ref_v, 2);
- }
- for (int t = 0; t < N - 1; t++) {
- //角速度,加速度,角加速度 weight loss
- fg[0] += vth_cost_weight * CppAD::pow(vars[ndlt + t], 2);
- if(t > N / 3){//前中后三段角速度权重1:3:6
- fg[0] += 2*vth_cost_weight * CppAD::pow(vars[ndlt + t], 2);
- }
- if(t > N / 3 * 2){//前中后三段角速度权重1:3:6
- fg[0] += 5*vth_cost_weight * CppAD::pow(vars[ndlt + t], 2);
- }
- fg[0] += a_cost_weight * CppAD::pow(vars[nv + t + 1] - vars[nv + t], 2);
- // fg[0] += ath_cost_weight * CppAD::pow(vars[ndlt + t + 1] - vars[ndlt + t], 2);
- }
- /////////////////////
- fg[1 + nx] = vars[nx] - vars[nv] * dt;
- fg[1 + ny] = vars[ny];
- //CppAD::AD<double> w0=vars[nv]/wheelbase*CppAD::tan(vars[ndlt]);
- fg[1 + nth] = vars[nth] - vars[ndlt] * dt;
- //位姿约束
- for (int t = 1; t < N; t++) {
- // State at time t + 1
- CppAD::AD<double> x1 = vars[nx + t];
- CppAD::AD<double> y1 = vars[ny + t];
- CppAD::AD<double> th1 = vars[nth + t];
- // State at time t
- CppAD::AD<double> x0 = vars[nx + t - 1];
- CppAD::AD<double> y0 = vars[ny + t - 1];
- CppAD::AD<double> th0 = vars[nth + t - 1];
- CppAD::AD<double> v0 = vars[nv + t - 1];
- // Setting up the rest of the model constraints
- fg[1 + nx + t] = x1 - (x0 + v0 * CppAD::cos(th0) * dt);
- fg[1 + ny + t] = y1 - (y0 + v0 * CppAD::sin(th0) * dt);
- fg[1 + nth + t] = th1 - (th0 + vars[ndlt + t - 1] * dt);
- }
- //加速度和dlt约束
- fg[1 + nv] = (vars[nv] - v) / dt;
- fg[1 + ndlt] = (vars[ndlt] - delta) / dt;
- for (int t = 1; t < N; ++t) {
- fg[1 + nv + t] = (vars[nv + t] - vars[nv + t - 1]) / dt;
- fg[1 + ndlt + t] = (vars[ndlt + t] - vars[ndlt + t - 1]) / dt;
- }
- if (m_statu.size() == 2 + 16) {
- //与障碍物的距离
- for (int i = 0; i < 8; ++i) {
- double ox = m_statu[2 + i * 2];
- double oy = m_statu[2 + i * 2 + 1];
- for (int t = 0; t < N; ++t) {
- /*第i点的矩形方程为: {[(x-xi)cos(Θi)-(y-yi)sin(Θi)]/1.35}**8 +
- * {[(x-xi)sin(Θi)+(y-yi)cos(Θi)]/0.75}**8 = 1.0
- *
- * */
- CppAD::AD<double> ra = (ox - vars[nx + t]) * CppAD::cos(vars[nth + t]) -
- (oy - vars[ny + t]) * CppAD::sin(vars[nth + t]);
- CppAD::AD<double> rb = (ox - vars[nx + t]) * CppAD::sin(vars[nth + t]) +
- (oy - vars[ny + t]) * CppAD::cos(vars[nth + t]);
- if(!directY_)
- fg[1 + nobs + N * i + t] = CppAD::pow(ra / obs_w, 8) + CppAD::pow(rb / (obs_h*0.76), 8);
- else
- fg[1 + nobs + N * i + t] = CppAD::pow(ra / (obs_w*0.76), 8) + CppAD::pow(rb / obs_h, 8);
- }
- }
- }
- }
- };
- LoadedMPC::LoadedMPC(const Pose2d &obs, double obs_w, double obs_h, double min_velocity, double max_velocity) {
- min_velocity_ = min_velocity;
- max_velocity_ = max_velocity;
- obs_relative_pose_ = obs;
- obs_w_ = obs_w;
- obs_h_ = obs_h;
- }
- LoadedMPC::~LoadedMPC() {}
- MpcError LoadedMPC::solve(Trajectory trajectory, Pose2d target, Eigen::VectorXd statu, MPC_parameter mpc_param,
- std::vector<double> &out, Trajectory &select_traj,
- Trajectory &optimize_trajectory,bool directY) {
- auto start = std::chrono::steady_clock::now();
- // State vector holds all current values neede for vars below
- Pose2d pose_agv = Pose2d(statu[0], statu[1], statu[2]);
- double line_velocity = statu[3];
- double wmg = statu[4];
- size_t N=19;//int(10./(1+exp(-16.*(fabs(line_velocity)-0.5)))+10);
- size_t nx = 0;
- size_t ny = nx + N;
- size_t nth = ny + N;
- size_t nv = nth + N;
- size_t ndlt = nv + N;
- size_t nobs = ndlt + N;
- //纠正角速度/线速度,使其满足最小转弯半径
- double angular = wmg;
- double radius = mpc_param.shortest_radius * (1.0 / sqrt(line_velocity * line_velocity + 1e-10));
- if ((line_velocity * line_velocity) / (wmg * wmg + 1e-9) < (radius * radius)) {
- angular = fabs(line_velocity) / radius;
- if (wmg < 0) angular = -angular;
- }
- double max_wmg = fabs(line_velocity) / radius;//0.5 / radius;
- std::vector<Pose2d> filte_poses;
- if (filte_Path(pose_agv, target, trajectory, filte_poses, 20) == false) {
- printf("filte path failed ...\n");
- return failed;
- }
- select_traj = Trajectory(filte_poses);
- //将选中点移动到小车坐标系
- std::vector<Pose2d> transform_poses;
- for (int i = 0; i < filte_poses.size(); i++) {
- double x = filte_poses[i].x() - pose_agv.x();
- double y = filte_poses[i].y() - pose_agv.y();
- transform_poses.push_back(Pose2d(x, y, 0).rotate(-pose_agv.theta()));
- }
- Eigen::VectorXd coef = fit_path(transform_poses);
- //优化
- typedef CPPAD_TESTVECTOR(double) Dvector;
- //根据当前点和目标点距离,计算目标速度
- double dis=Pose2d::distance(pose_agv, target);
- //目标点与起点的连线 朝向与启动朝向 > M_PI/2.0
- double pdt = mpc_param.dt;
- double dt=fabs(pdt-0.1)/(1+exp(-25.*(fabs(line_velocity)-0.8)))+0.1;
- //printf("min_v:%f max_v:%f\n",min_velocity_,max_velocity_);
- double max_dlt = max_wmg;//5*M_PI/180.0;
- double acc_sigmoid= (max_velocity_+1.15)/(1+exp(-4.*(fabs(line_velocity)-0.7)))+0.45;
- double max_acc_line_velocity = mpc_param.acc_velocity*acc_sigmoid;
- double max_acc_dlt = mpc_param.acc_angular;
- double ref1=sqrt(0.5*dis/mpc_param.acc_velocity)+min_velocity_;
- double ref2=2.5/(1.+exp(-2.5*(dis-1.2)))-0.12+min_velocity_;
- double ref_velocity = std::min(ref1,ref2);//max_velocity_/(1+exp(-4.*(dis-0.8)))+min_velocity_;
- Pose2d targetPoseInAGV = Pose2d::relativePose(target, pose_agv);
- //std::cout<<"target:"<<target<<", agv:"<<pose_agv<<", relative:"<<targetPoseInAGV<<std::endl;
- if (targetPoseInAGV.x() < 0)
- ref_velocity = -ref_velocity;
- size_t n_vars = N * 5;
- Dvector vars(n_vars);
- for (int i = 0; i < n_vars; i++) {
- vars[i] = 0.0;
- }
- Dvector vars_lowerbound(n_vars);
- Dvector vars_upperbound(n_vars);
- for (int i = 0; i < n_vars; i++) {
- vars_lowerbound[i] = -1.0e19;
- vars_upperbound[i] = 1.0e19;
- }
- //// limit v
- for (int i = nv; i < nv + N; i++) {
- vars_lowerbound[i] = -max_velocity_;
- vars_upperbound[i] = max_velocity_;
- }
- ////limint dlt
- for (int i = ndlt; i < ndlt + N; i++) {
- vars_lowerbound[i] = -max_dlt;
- vars_upperbound[i] = max_dlt;
- }
- // Lower and upper limits for the constraints
- size_t n_constraints = N * 5;
- /*
- * 障碍物是否进入 碰撞检测范围内
- */
- float distance = Pose2d::distance(obs_relative_pose_, Pose2d(0, 0, 0));
- bool find_obs = false;
- if (distance < 20) {
- printf(" mpc find obs ,w=%f,h=%f\n",obs_w_,obs_h_);
- find_obs = true;
- }
- if (find_obs) n_constraints = N * (5 + 8);
- Dvector constraints_lowerbound(n_constraints);
- Dvector constraints_upperbound(n_constraints);
- for (int i = 0; i < n_constraints; i++) {
- constraints_lowerbound[i] = 0;
- constraints_upperbound[i] = 0;
- }
- //// acc v
- for (int i = nv; i < nv + N; i++) {
- constraints_lowerbound[i] = -max_acc_line_velocity;
- constraints_upperbound[i] = max_acc_line_velocity;
- //延迟处理,前delay个周期内认定为匀速运动(加速度为0)
- if (i < nv+delay) {
- constraints_lowerbound[i] = 0;
- constraints_upperbound[i] = 0;
- }
- }
- //// acc ndlt
- for (int i = ndlt; i < ndlt + N; i++) {
- constraints_lowerbound[i] = -max_acc_dlt;
- constraints_upperbound[i] = max_acc_dlt;
- //延迟处理,前delay个周期内认定为匀速运动(加速度为0)
- if (i < ndlt+delay){
- constraints_lowerbound[i] = 0;
- constraints_upperbound[i] = 0;
- }
- }
- // 与障碍物保持距离的约束
- if (find_obs) {
- for (int i = nobs; i < nobs + 8 * N; ++i) {
- constraints_lowerbound[i] = 1.0;
- constraints_upperbound[i] = 1e19;
- }
- }
- //限制最小转弯半径,
- /*for(int i=nwmg;i<nwmg+N;++i)
- {
- constraints_lowerbound[i] = 0;
- constraints_upperbound[i] = 1.0/(radius*radius);
- }*/
- if (line_velocity > max_velocity_) {
- line_velocity = max_velocity_;
- }
- if (line_velocity < -max_velocity_) {
- line_velocity = -max_velocity_;
- }
- if (angular > max_dlt) {
- angular = max_dlt;
- }
- if (angular < -max_dlt) {
- angular = -max_dlt;
- }
- Eigen::VectorXd statu_velocity(2);
- if (find_obs) {
- statu_velocity = Eigen::VectorXd(2 + 16);
- std::vector<Pose2d> vertexs = Pose2d::generate_rectangle_vertexs(obs_relative_pose_, obs_w_ * 2, obs_h_ * 2);
- for (int i = 0; i < vertexs.size(); ++i) {
- //std::cout<<"vetex:"<<vertexs[i]<<std::endl;
- statu_velocity[2 + i * 2] = vertexs[i].x();
- statu_velocity[2 + i * 2 + 1] = vertexs[i].y();
- }
- }
- statu_velocity[0] = line_velocity;
- statu_velocity[1] = angular;
- Eigen::VectorXd condition(6);
- condition << dt, ref_velocity, obs_w_, obs_h_, targetPoseInAGV.x(), targetPoseInAGV.y();
- FG_eval_half_agv fg_eval(coef, statu_velocity, condition,directY,N);
- // options for IPOPT solver
- std::string options;
- // Uncomment this if you'd like more print information
- options += "Integer print_level 0\n";
- options += "Sparse true forward\n";
- options += "Sparse true reverse\n";
- options += "Numeric max_cpu_time 0.5\n";
- // place to return solution
- CppAD::ipopt::solve_result<Dvector> solution;
- // solve the problem
- CppAD::ipopt::solve<Dvector, FG_eval_half_agv>(
- options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
- constraints_upperbound, fg_eval, solution);
- auto now = std::chrono::steady_clock::now();
- auto duration = std::chrono::duration_cast<std::chrono::microseconds>(now - start);
- double time =
- double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den;
- // invalid_number_detected
- if (solution.status != CppAD::ipopt::solve_result<Dvector>::success) {
- printf(" mpc failed statu : %d input: %.4f %.5f(%.5f) max_v:%f\n", solution.status, line_velocity,
- wmg, angular, max_velocity_);
- if (solution.status == CppAD::ipopt::solve_result<Dvector>::local_infeasibility)
- return no_solution;
- if (solution.status == CppAD::ipopt::solve_result<Dvector>::unknown)
- return unknown;
- return failed;
- }
- // Cost
- auto cost = solution.obj_value;
- out.clear();
- double solve_velocity[down_count];
- double solve_angular[down_count];
- for (int i = 0; i < down_count; ++i) {
- solve_velocity[i] = solution.x[nv + delay + i];
- solve_angular[i] = solution.x[ndlt + delay + i];
- //纠正角速度/线速度,使其满足最小转弯半径
- double correct_angular = solve_angular[i];
- if ((solve_velocity[i] * solve_velocity[i]) / (solve_angular[i] * solve_angular[i] + 1e-9) < (radius * radius)) {
- correct_angular = fabs(line_velocity) / radius;
- if (solve_angular[i] < 0) correct_angular = -correct_angular;
- }
- ///-----
- /*
- printf(" P[%d],input:%.4f %.5f(%.5f) output:%.4f %.5f(%.5f) ref:%.3f max_v:%f time:%.3f\n",
- i, line_velocity, wmg, angular, solve_velocity[i], solve_angular[i], correct_angular,
- ref_velocity, max_velocity_, time);*/
- out.push_back(solve_velocity[i]);
- out.push_back(correct_angular);
- }
- //计算预测轨迹
- optimize_trajectory.clear();
- for (int i = 0; i < N; ++i) {
- Pose2d pose(solution.x[nx + i], solution.x[ny + i], solution.x[nth + i]);
- optimize_trajectory.push_point(pose_agv + pose.rotate(pose_agv.theta()));
- }
- return success;
- }
- bool LoadedMPC::filte_Path(const Pose2d &point, Pose2d target, Trajectory trajectory,
- std::vector<Pose2d> &poses, int point_num) {
- double gradient = 0;
- if (fabs((target - point).x()) == 0)
- gradient = 200.0;
- else
- gradient = (target - point).y() / (target - point).x();
- double theta = gradient2theta(gradient, target.x() - point.x() >= 0);
- if (trajectory.size() < 2)
- return false;
- poses.clear();
- for (int i = 0; i < trajectory.size(); i++) {
- // 平移加反向旋转到小车坐标系
- Pose2d offset = trajectory[i] - point;
- double x = offset.x();
- double y = offset.y();
- double trans_x = x * cos(-theta) - y * sin(-theta);
- double trans_y = x * sin(-theta) + y * cos(-theta);
- if (trans_x >= 0 && poses.size() < point_num) {
- // 旋转到原坐标系
- float nx = trans_x * cos(theta) - trans_y * sin(theta);
- float ny = trans_x * sin(theta) + trans_y * cos(theta);
- Pose2d pose(nx + point.x(), ny + point.y(), trajectory[i].theta());
- poses.push_back(pose);
- }
- }
- int size = poses.size();
- if (size < point_num) {
- //一个点都没有,则以当前点开始,反向取点
- float dl = -0.1;
- Pose2d last = point;
- if (size >= 1) {
- //从最后点到最后一点均匀选取
- last = poses[size - 1]; //
- dl = 0.1;
- }
- float dx = cos(last.theta()) * dl;
- float dy = sin(last.theta()) * dl;
- for (int i = 1; i < point_num - size + 1; ++i)
- poses.push_back(Pose2d(last.x() + dx * i, last.y() + dy * i, last.theta()));
- }
- return true;
- }
- Eigen::VectorXd LoadedMPC::fit_path(const std::vector<Pose2d> &trajectory) {
- int order = 3;
- assert(order >= 1 && order <= trajectory.size() - 1);
- Eigen::MatrixXd A(trajectory.size(), order + 1);
- Eigen::VectorXd yvals(trajectory.size());
- for (int i = 0; i < trajectory.size(); i++) {
- A(i, 0) = 1.0;
- yvals[i] = trajectory[i].y();
- }
- for (int j = 0; j < trajectory.size(); j++) {
- for (int i = 0; i < order; i++) {
- A(j, i + 1) = A(j, i) * trajectory[j].x();
- }
- }
- auto Q = A.householderQr();
- auto result = Q.solve(yvals);
- return result;
- }
|