123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415 |
- //
- // Created by zx on 22-12-1.
- //
- #include "loaded_mpc.h"
- #include <chrono>
- #include <cppad/cppad.hpp>
- #include <cppad/ipopt/solve.hpp>
- size_t N = 20; //优化考虑后面多少步
- size_t nx = 0;
- size_t ny = nx + N;
- size_t nth = ny + N;
- size_t nv = nth + N;
- size_t ndlt = nv + N;
- size_t nobs=ndlt+N;
- size_t nwmg=nobs+N;
- class FG_eval_half_agv {
- public:
- // Fitted polynomial coefficients
- Eigen::VectorXd m_coeffs; //曲线方程
- Eigen::VectorXd m_statu; //当前状态
- Eigen::VectorXd m_condition; //搜索条件参数
- FG_eval_half_agv(Eigen::VectorXd coeffs,Eigen::VectorXd statu,Eigen::VectorXd condition) {
- m_coeffs=coeffs;
- m_statu=statu;
- m_condition=condition;
- }
- typedef CPPAD_TESTVECTOR(CppAD::AD<double>) ADvector;
- void operator()(ADvector& fg, const ADvector& vars) {
- fg[0] = 0;
- double dt=m_condition[0];
- double ref_v=m_condition[1];
- double v=m_statu[0];
- double delta=m_statu[1];
- double obs_x=m_statu[2];
- double obs_y=m_statu[3];
- double obs_distance=sqrt(obs_x*obs_x+obs_y*obs_y);
- // Reference State Cost
- // Below defines the cost related the reference state and
- // any anything you think may be beneficial.
- // Weights for how "important" each cost is - can be tuned
- const double y_cost_weight = 5000;
- const double th_cost_weight = 4000;
- const double v_cost_weight = 1000;
- const double vth_cost_weight = 1000;
- const double a_cost_weight = 1;
- const double ath_cost_weight=100;
- const double obs_distance_weight=1000.0;
- // Cost for CTE, psi error and velocity
- for (int t = 0; t < N; t++) {
- CppAD::AD<double> xt=vars[nx+t];
- CppAD::AD<double> fx = m_coeffs[0] + m_coeffs[1] * xt + m_coeffs[2] * pow(xt, 2) + m_coeffs[3] * pow(xt, 3);
- fg[0] += y_cost_weight * CppAD::pow(vars[ny+t]-fx, 2);
- //朝向loss
- CppAD::AD<double> fth = CppAD::atan(m_coeffs[1] + 2*m_coeffs[2]*xt + 3*m_coeffs[3]*pow(xt,2));
- fg[0] += th_cost_weight * CppAD::pow(vars[nth + t]-fth, 2);
- //目标速度loss
- fg[0]+=v_cost_weight*CppAD::pow(vars[nv+t]-ref_v,2);
- //loss 加上车位姿与障碍物的距离
- /*if(obs_distance<4.0)
- fg[0]+=obs_distance_weight*(16.0-(CppAD::pow(vars[nx+t]-obs_x,2)));*/
- }
- // Costs for steering (delta) and acceleration (a)
- for (int t = 0; t < N-1; t++) {
- //速度,加速度,前轮角 weight loss
- fg[0] += vth_cost_weight * CppAD::pow(vars[ndlt+t], 2);
- fg[0] += a_cost_weight * CppAD::pow(vars[nv + t+1]-vars[nv+t], 2);
- fg[0] += ath_cost_weight * CppAD::pow(vars[ndlt+t+1]-vars[ndlt+t], 2);
- }
- /////////////////////
- fg[1 + nx] = vars[nx]-vars[nv]*dt;
- fg[1 + ny] = vars[ny];
- //CppAD::AD<double> w0=vars[nv]/wheelbase*CppAD::tan(vars[ndlt]);
- fg[1 + nth] = vars[nth]-vars[ndlt]*dt;
- //位姿约束
- for (int t = 1; t < N; t++) {
- // State at time t + 1
- CppAD::AD<double> x1 = vars[nx + t];
- CppAD::AD<double> y1 = vars[ny + t];
- CppAD::AD<double> th1 = vars[nth + t];
- // State at time t
- CppAD::AD<double> x0 = vars[nx + t -1];
- CppAD::AD<double> y0 = vars[ny + t -1];
- CppAD::AD<double> th0 = vars[nth + t-1];
- CppAD::AD<double> v0 = vars[nv + t-1];
- //CppAD::AD<double> w_0=vars[nv+t-1]/wheelbase*CppAD::tan(vars[ndlt+t-1]);
- // Setting up the rest of the model constraints
- fg[1 + nx + t] = x1 - (x0 + v0 * CppAD::cos(th0) * dt);
- fg[1 + ny + t] = y1 - (y0 + v0 * CppAD::sin(th0) * dt);
- fg[1 + nth + t] = th1 - (th0 + vars[ndlt+t-1] * dt);
- }
- //加速度和dlt约束
- fg[1 + nv]=(vars[nv]-v)/dt;
- fg[1+ndlt]=(vars[ndlt]-delta)/dt;
- for(int t=1;t<N;++t)
- {
- fg[1+nv+t]=(vars[nv+t]-vars[nv+t-1])/dt;
- fg[1+ndlt+t]=(vars[ndlt+t]-vars[ndlt+t-1])/dt;
- }
- //与障碍物的距离
- for(int t=0;t<N;++t)
- {
- fg[1+nobs+t]=CppAD::pow(vars[nx+t]-obs_x,2)+CppAD::pow(vars[ny+t]-obs_y,2);
- }
- //转弯半径
- /*for(int t=0;t<N;++t)
- {
- fg[1+nwmg+t]=CppAD::pow(vars[ndlt+t],2)/(CppAD::pow(vars[nv+t],2)+1e-10);
- }*/
- }
- };
- LoadedMPC::LoadedMPC(const Pose2d& obs,double min_velocity,double max_velocity){
- min_velocity_=min_velocity;
- max_velocity_=max_velocity;
- obs_relative_pose_=obs;
- }
- LoadedMPC::~LoadedMPC(){}
- bool LoadedMPC::solve(const Trajectory& trajectory, const Pose2d& target,Eigen::VectorXd statu,
- std::vector<double>& out,Trajectory& select_traj,Trajectory& optimize_trajectory)
- {
- auto start=std::chrono::steady_clock::now();
- // State vector holds all current values neede for vars below
- Pose2d pose_agv = Pose2d(statu[0], statu[1], statu[2]);
- double line_velocity = statu[3];
- double wmg = statu[4];
- //纠正角速度/线速度,使其满足最小转弯半径
- double angular=wmg;
- double radius=20.0*1.3 * (1.0/sqrt(line_velocity*line_velocity+1e-10));
- if( (line_velocity*line_velocity)/(wmg*wmg+1e-9) < (radius*radius)) {
- angular = fabs(line_velocity) / radius;
- if (wmg < 0) angular = -angular;
- }
- double max_wmg=0.5/radius;//fabs(line_velocity) / radius;
- std::vector<Pose2d> filte_poses;
- if (filte_Path(pose_agv, target, trajectory, filte_poses, 10) == false)
- {
- printf( "filte path failed ...\n");
- return false;
- }
- select_traj= Trajectory(filte_poses);
- //将选中点移动到小车坐标系
- std::vector<Pose2d> transform_poses;
- for (int i = 0; i < filte_poses.size(); i++)
- {
- double x = filte_poses[i].x() - pose_agv.x();
- double y = filte_poses[i].y() - pose_agv.y();
- transform_poses.push_back(Pose2d(x,y,0).rotate(-pose_agv.theta()));
- }
- Eigen::VectorXd coef = fit_path(transform_poses);
- //优化
- bool ok = true;
- typedef CPPAD_TESTVECTOR(double) Dvector;
- //根据当前点和目标点距离,计算目标速度
- double ref_velocity = Pose2d::distance(pose_agv, target) / 2.5;
- if(ref_velocity<0.05)
- ref_velocity=0.05;
- //目标点与起点的连线 朝向与启动朝向 > M_PI/2.0
- Pose2d targetPoseInAGV=Pose2d::relativePose(target,pose_agv);
- //std::cout<<"target:"<<target<<", agv:"<<pose_agv<<", relative:"<<targetPoseInAGV<<std::endl;
- if(targetPoseInAGV.x()<0)
- ref_velocity = -ref_velocity;
- double dt = 0.1;
- //printf("min_v:%f max_v:%f\n",min_velocity_,max_velocity_);
- double max_dlt=max_wmg;//5*M_PI/180.0;
- double max_acc_line_velocity=0.5;
- double max_acc_dlt=10.*M_PI/180.0;
- size_t n_vars = N * 5;
- Dvector vars(n_vars);
- for (int i = 0; i < n_vars; i++)
- {
- vars[i] = 0.0;
- }
- Dvector vars_lowerbound(n_vars);
- Dvector vars_upperbound(n_vars);
- for (int i = 0; i < n_vars; i++)
- {
- vars_lowerbound[i] = -1.0e19;
- vars_upperbound[i] = 1.0e19;
- }
- //// limit v
- for (int i = nv; i < nv + N; i++)
- {
- vars_lowerbound[i] = -max_velocity_;
- vars_upperbound[i] = max_velocity_;
- }
- ////limint dlt
- for (int i = ndlt; i < ndlt + N; i++)
- {
- vars_lowerbound[i] = -max_dlt;
- vars_upperbound[i] = max_dlt;
- }
- // Lower and upper limits for the constraints
- size_t n_constraints = N * (5+1);
- Dvector constraints_lowerbound(n_constraints);
- Dvector constraints_upperbound(n_constraints);
- for (int i = 0; i < n_constraints; i++)
- {
- constraints_lowerbound[i] = 0;
- constraints_upperbound[i] = 0;
- }
- //// acc v
- for (int i = nv; i < nv + N; i++)
- {
- constraints_lowerbound[i] = -max_acc_line_velocity;
- constraints_upperbound[i] = max_acc_line_velocity;
- }
- //// acc ndlt
- for (int i = ndlt; i < ndlt + N; i++)
- {
- constraints_lowerbound[i] = -max_acc_dlt;
- constraints_upperbound[i] = max_acc_dlt;
- }
- // 与障碍物保持距离
- double dobs=1.6;
- for(int i=nobs;i<nobs+N;++i)
- {
- constraints_lowerbound[i] = dobs*dobs;//pow(float(nobs+N-i)/float(N)*dobs,2);
- constraints_upperbound[i] = 1e19;
- }
- //限制最小转弯半径,
- /*for(int i=nwmg;i<nwmg+N;++i)
- {
- constraints_lowerbound[i] = 0;
- constraints_upperbound[i] = 1.0/(radius*radius);
- }*/
- Eigen::VectorXd statu_velocity(4);
- if(line_velocity>max_velocity_)
- {
- line_velocity=max_velocity_;
- //printf(" input +v limited\n");
- }
- if(line_velocity<-max_velocity_)
- {
- line_velocity=-max_velocity_;
- //printf(" input -v limited\n");
- }
- if(angular>max_dlt)
- {
- angular = max_dlt;
- printf(" input +dlt limited\n");
- }
- if(angular<-max_dlt)
- {
- angular = -max_dlt;
- printf(" input -dlt limited\n");
- }
- statu_velocity << line_velocity, angular,obs_relative_pose_.x(),obs_relative_pose_.y();
- Eigen::VectorXd condition(2);
- condition << dt, ref_velocity;
- FG_eval_half_agv fg_eval(coef, statu_velocity, condition);
- // options for IPOPT solver
- std::string options;
- // Uncomment this if you'd like more print information
- options += "Integer print_level 0\n";
- options += "Sparse true forward\n";
- options += "Sparse true reverse\n";
- options += "Numeric max_cpu_time 0.5\n";
- // place to return solution
- CppAD::ipopt::solve_result<Dvector> solution;
- // solve the problem
- CppAD::ipopt::solve<Dvector, FG_eval_half_agv>(
- options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
- constraints_upperbound, fg_eval, solution);
- auto now=std::chrono::steady_clock::now();
- auto duration = std::chrono::duration_cast<std::chrono::microseconds>(now - start);
- double time = double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den;
- ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
- if (ok == false)
- {
- printf(" mpc failed statu : %d input: %.4f %.5f(%.5f) relative:(%f,%f) \n",solution.status,line_velocity,
- wmg,angular,obs_relative_pose_.x(),obs_relative_pose_.y());
- return false;
- }
- // Cost
- auto cost = solution.obj_value;
- out.clear();
- double solve_velocity=solution.x[nv];
- double solve_angular=solution.x[ndlt];
- //纠正角速度/线速度,使其满足最小转弯半径
- double correct_angular=solve_angular;
- if( (solve_velocity*solve_velocity)/(solve_angular*solve_angular+1e-9) < (radius*radius)) {
- correct_angular = fabs(line_velocity) / radius;
- if (solve_angular < 0) correct_angular = -correct_angular;
- }
- ///-----
- printf("input : %.4f %.5f(%.5f) output : %.4f %.5f(%.5f) ref : %.3f relative:(%f,%f) time:%.3f\n",
- line_velocity,wmg,angular,solve_velocity,solve_angular,correct_angular,
- ref_velocity,targetPoseInAGV.x(),targetPoseInAGV.y(),time);
- if(solve_velocity>=0 && solve_velocity<min_velocity_)
- solve_velocity=min_velocity_;
- if(solve_velocity<0 && solve_velocity>-min_velocity_)
- solve_velocity=-min_velocity_;
- out.push_back(solve_velocity);
- out.push_back(correct_angular);
- //计算预测轨迹
- optimize_trajectory.clear();
- for (int i = 0; i < N; ++i)
- {
- Pose2d pose(solution.x[nx + i], solution.x[ny + i], solution.x[nth + i]);
- optimize_trajectory.push_point(pose_agv+pose.rotate(pose_agv.theta()));
- }
- return true;
- }
- bool LoadedMPC::filte_Path(const Pose2d& point,const Pose2d& target,const Trajectory& trajectory,
- std::vector<Pose2d>& poses,int point_num)
- {
- double gradient=0;
- if(fabs((target-point).x())==0)
- gradient=200.0;
- else
- gradient= (target-point).y()/(target-point).x();
- double theta=gradient2theta(gradient,target.x()-point.x()>=0);
- if(trajectory.size() < point_num)
- return false;
- poses.clear();
- for (int i = 0; i < trajectory.size(); i++)
- {
- // 平移加反向旋转到小车坐标系
- Pose2d offset=trajectory[i]-point;
- double x = offset.x();
- double y = offset.y();
- double trans_x = x * cos(-theta) - y * sin(-theta);
- double trans_y = x * sin(-theta) + y * cos(-theta);
- if (trans_x>=0 && poses.size() < point_num)
- {
- // 旋转到原坐标系
- float nx=trans_x * cos(theta) - trans_y * sin(theta);
- float ny=trans_x*sin(theta)+trans_y*cos(theta);
- Pose2d pose(nx+point.x(),ny+point.y(),trajectory[i].theta());
- poses.push_back(pose);
- }
- }
- return true;
- }
- Eigen::VectorXd LoadedMPC::fit_path(const std::vector<Pose2d>& trajectory)
- {
- int order=3;
- assert(order >= 1 && order <= trajectory.size() - 1);
- Eigen::MatrixXd A(trajectory.size(), order + 1);
- Eigen::VectorXd yvals(trajectory.size());
- for (int i = 0; i < trajectory.size(); i++) {
- A(i, 0) = 1.0;
- yvals[i]=trajectory[i].y();
- }
- for (int j = 0; j < trajectory.size(); j++) {
- for (int i = 0; i < order; i++) {
- A(j, i + 1) = A(j, i) * trajectory[j].x();
- }
- }
- auto Q = A.householderQr();
- auto result = Q.solve(yvals);
- return result;
- }
|