loaded_mpc.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. //
  2. // Created by zx on 22-12-1.
  3. //
  4. #include "loaded_mpc.h"
  5. #include <chrono>
  6. #include <cppad/cppad.hpp>
  7. #include <cppad/ipopt/solve.hpp>
  8. size_t N = 10; //优化考虑后面多少步
  9. size_t nx = 0;
  10. size_t ny = nx + N;
  11. size_t nth = ny + N;
  12. size_t nv = nth + N;
  13. size_t ndlt = nv + N;
  14. size_t nobs = ndlt + N;
  15. class FG_eval_half_agv {
  16. public:
  17. // Fitted polynomial coefficients
  18. Eigen::VectorXd m_coeffs; //曲线方程
  19. Eigen::VectorXd m_statu; //当前状态
  20. Eigen::VectorXd m_condition; //搜索条件参数
  21. FG_eval_half_agv(Eigen::VectorXd coeffs, Eigen::VectorXd statu, Eigen::VectorXd condition) {
  22. m_coeffs = coeffs;
  23. m_statu = statu;
  24. m_condition = condition;
  25. }
  26. typedef CPPAD_TESTVECTOR(CppAD::AD<double>) ADvector;
  27. void operator()(ADvector &fg, const ADvector &vars) {
  28. fg[0] = 0;
  29. double dt = m_condition[0];
  30. double ref_v = m_condition[1];
  31. double obs_w = m_condition[2];
  32. double obs_h = m_condition[3];
  33. double target_x = m_condition[4];
  34. double target_y = m_condition[5];
  35. double v = m_statu[0];
  36. double delta = m_statu[1];
  37. // Weights for how "important" each cost is - can be tuned
  38. const double y_cost_weight = 1000;
  39. const double th_cost_weight = 4000;
  40. const double v_cost_weight = 5000;
  41. const double vth_cost_weight = 1000;
  42. const double a_cost_weight = 1;
  43. const double ath_cost_weight = 10;
  44. const double obs_distance_weight = 5000.0;
  45. // Cost for CTE, psi error and velocity
  46. for (int t = 0; t < N; t++) {
  47. CppAD::AD<double> xt = vars[nx + t];
  48. CppAD::AD<double> fx = m_coeffs[0] + m_coeffs[1] * xt + m_coeffs[2] * pow(xt, 2) + m_coeffs[3] * pow(xt, 3);
  49. fg[0] += y_cost_weight * CppAD::pow(vars[ny + t] - fx, 2);
  50. //fg[0]+=v_cost_weight*(CppAD::pow(vars[nx+t]-target_x,2)+CppAD::pow(vars[ny+t]-target_y,2));
  51. //目标速度loss
  52. fg[0] += v_cost_weight * CppAD::pow(vars[nv + t] - ref_v, 2);
  53. }
  54. for (int t = 0; t < N - 1; t++) {
  55. //速度,加速度,前轮角 weight loss
  56. fg[0] += vth_cost_weight * CppAD::pow(vars[ndlt + t], 2);
  57. fg[0] += a_cost_weight * CppAD::pow(vars[nv + t + 1] - vars[nv + t], 2);
  58. fg[0] += ath_cost_weight * CppAD::pow(vars[ndlt + t + 1] - vars[ndlt + t], 2);
  59. }
  60. /////////////////////
  61. fg[1 + nx] = vars[nx] - vars[nv] * dt;
  62. fg[1 + ny] = vars[ny];
  63. //CppAD::AD<double> w0=vars[nv]/wheelbase*CppAD::tan(vars[ndlt]);
  64. fg[1 + nth] = vars[nth] - vars[ndlt] * dt;
  65. //位姿约束
  66. for (int t = 1; t < N; t++) {
  67. // State at time t + 1
  68. CppAD::AD<double> x1 = vars[nx + t];
  69. CppAD::AD<double> y1 = vars[ny + t];
  70. CppAD::AD<double> th1 = vars[nth + t];
  71. // State at time t
  72. CppAD::AD<double> x0 = vars[nx + t - 1];
  73. CppAD::AD<double> y0 = vars[ny + t - 1];
  74. CppAD::AD<double> th0 = vars[nth + t - 1];
  75. CppAD::AD<double> v0 = vars[nv + t - 1];
  76. // Setting up the rest of the model constraints
  77. fg[1 + nx + t] = x1 - (x0 + v0 * CppAD::cos(th0) * dt);
  78. fg[1 + ny + t] = y1 - (y0 + v0 * CppAD::sin(th0) * dt);
  79. fg[1 + nth + t] = th1 - (th0 + vars[ndlt + t - 1] * dt);
  80. }
  81. //加速度和dlt约束
  82. fg[1 + nv] = (vars[nv] - v) / dt;
  83. fg[1 + ndlt] = (vars[ndlt] - delta) / dt;
  84. for (int t = 1; t < N; ++t) {
  85. fg[1 + nv + t] = (vars[nv + t] - vars[nv + t - 1]) / dt;
  86. fg[1 + ndlt + t] = (vars[ndlt + t] - vars[ndlt + t - 1]) / dt;
  87. }
  88. if (m_statu.size() == 2 + 3) {
  89. float obs_x = m_statu[2];
  90. float obs_y = m_statu[3];
  91. float obs_theta = m_statu[4];
  92. Pose2d obs_relative_pose(obs_x, obs_y, obs_theta);
  93. std::vector<Pose2d> obs_vertexes = Pose2d::generate_rectangle_vertexs(obs_relative_pose, obs_w * 2,
  94. obs_h * 2);
  95. for (auto t = 0; t < N; ++t) {
  96. CppAD::AD<double> min_distance = 1e19;
  97. for (auto i = 0; i < 8; ++i) {
  98. CppAD::AD<double> ra = (obs_vertexes[i].x() - vars[nx + t]) * CppAD::cos(vars[nth + t]) -
  99. (obs_vertexes[i].y() - vars[ny + t]) * CppAD::sin(vars[nth + t]);
  100. CppAD::AD<double> rb = (obs_vertexes[i].x() - vars[nx + t]) * CppAD::sin(vars[nth + t]) +
  101. (obs_vertexes[i].y() - vars[ny + t]) * CppAD::cos(vars[nth + t]);
  102. CppAD::AD<double> distance = CppAD::pow(ra / obs_w, 8) + CppAD::pow(rb / obs_h, 8);
  103. if (distance < min_distance) min_distance = distance;
  104. }
  105. fg[nobs + t] = min_distance;
  106. }
  107. // std::cout << " fg[n_obs]: " << fg[n_obs] << " | __LINE__:" << __LINE__ << std::endl;
  108. }
  109. // if (m_statu.size() == 2 + 3) {
  110. // //与障碍物的距离
  111. // for (int i = 0; i < 8; ++i) {
  112. // double ox = m_statu[2 + i * 2];
  113. // double oy = m_statu[2 + i * 2 + 1];
  114. // for (int t = 0; t < N; ++t) {
  115. // /*第i点的矩形方程为: {[(x-xi)cos(Θi)-(y-yi)sin(Θi)]/1.35}**8 +
  116. // * {[(x-xi)sin(Θi)+(y-yi)cos(Θi)]/0.75}**8 = 1.0
  117. // *
  118. // * */
  119. // CppAD::AD<double> ra = (ox - vars[nx + t]) * CppAD::cos(vars[nth + t]) -
  120. // (oy - vars[ny + t]) * CppAD::sin(vars[nth + t]);
  121. // CppAD::AD<double> rb = (ox - vars[nx + t]) * CppAD::sin(vars[nth + t]) +
  122. // (oy - vars[ny + t]) * CppAD::cos(vars[nth + t]);
  123. // fg[1 + nobs + N * i + t] = CppAD::pow(ra / obs_w, 8) + CppAD::pow(rb / obs_h, 8);
  124. // }
  125. // }
  126. // }
  127. }
  128. };
  129. LoadedMPC::LoadedMPC(const Pose2d &obs, double obs_w, double obs_h, double min_velocity, double max_velocity) {
  130. min_velocity_ = min_velocity;
  131. max_velocity_ = max_velocity;
  132. obs_relative_pose_ = obs;
  133. obs_w_ = obs_w;
  134. obs_h_ = obs_h;
  135. }
  136. LoadedMPC::~LoadedMPC() {}
  137. MpcError LoadedMPC::solve(Trajectory trajectory, Pose2d target, Eigen::VectorXd statu, MPC_parameter mpc_param,
  138. std::vector<double> &out, Trajectory &select_traj, Trajectory &optimize_trajectory) {
  139. auto start = std::chrono::steady_clock::now();
  140. // State vector holds all current values neede for vars below
  141. Pose2d pose_agv = Pose2d(statu[0], statu[1], statu[2]);
  142. double line_velocity = statu[3];
  143. double wmg = statu[4];
  144. //纠正角速度/线速度,使其满足最小转弯半径
  145. double angular = wmg;
  146. double radius = mpc_param.shortest_radius * (1.0 / sqrt(line_velocity * line_velocity + 1e-10));
  147. if ((line_velocity * line_velocity) / (wmg * wmg + 1e-9) < (radius * radius)) {
  148. angular = fabs(line_velocity) / radius;
  149. if (wmg < 0) angular = -angular;
  150. }
  151. double max_wmg = 0.5 / radius;//fabs(line_velocity) / radius;
  152. std::vector<Pose2d> filte_poses;
  153. if (filte_Path(pose_agv, target, trajectory, filte_poses, 10) == false) {
  154. printf("filte path failed ...\n");
  155. return failed;
  156. }
  157. select_traj = Trajectory(filte_poses);
  158. //将选中点移动到小车坐标系
  159. std::vector<Pose2d> transform_poses;
  160. for (int i = 0; i < filte_poses.size(); i++) {
  161. double x = filte_poses[i].x() - pose_agv.x();
  162. double y = filte_poses[i].y() - pose_agv.y();
  163. transform_poses.push_back(Pose2d(x, y, 0).rotate(-pose_agv.theta()));
  164. }
  165. Eigen::VectorXd coef = fit_path(transform_poses);
  166. //优化
  167. typedef CPPAD_TESTVECTOR(double) Dvector;
  168. //根据当前点和目标点距离,计算目标速度
  169. double ref_velocity = Pose2d::distance(pose_agv, target) / 2.5;
  170. if (ref_velocity < 0.1)
  171. ref_velocity = 0.1;
  172. //目标点与起点的连线 朝向与启动朝向 > M_PI/2.0
  173. Pose2d targetPoseInAGV = Pose2d::relativePose(target, pose_agv);
  174. //std::cout<<"target:"<<target<<", agv:"<<pose_agv<<", relative:"<<targetPoseInAGV<<std::endl;
  175. if (targetPoseInAGV.x() < 0)
  176. ref_velocity = -ref_velocity;
  177. double dt = mpc_param.dt;
  178. //printf("min_v:%f max_v:%f\n",min_velocity_,max_velocity_);
  179. double max_dlt = max_wmg;//5*M_PI/180.0;
  180. double max_acc_line_velocity = mpc_param.acc_velocity;
  181. double max_acc_dlt = mpc_param.acc_angular * M_PI / 180.0;
  182. size_t n_vars = N * 5;
  183. Dvector vars(n_vars);
  184. for (int i = 0; i < n_vars; i++) {
  185. vars[i] = 0.0;
  186. }
  187. Dvector vars_lowerbound(n_vars);
  188. Dvector vars_upperbound(n_vars);
  189. for (int i = 0; i < n_vars; i++) {
  190. vars_lowerbound[i] = -1.0e19;
  191. vars_upperbound[i] = 1.0e19;
  192. }
  193. //// limit v
  194. for (int i = nv; i < nv + N; i++) {
  195. vars_lowerbound[i] = -max_velocity_;
  196. vars_upperbound[i] = max_velocity_;
  197. }
  198. ////limint dlt
  199. for (int i = ndlt; i < ndlt + N; i++) {
  200. vars_lowerbound[i] = -max_dlt;
  201. vars_upperbound[i] = max_dlt;
  202. }
  203. // Lower and upper limits for the constraints
  204. /*
  205. * 障碍物是否进入 碰撞检测范围内
  206. */
  207. float distance = Pose2d::distance(obs_relative_pose_, Pose2d(0, 0, 0));
  208. bool find_obs = distance < 20;
  209. if (find_obs) printf(" find obs ..............................\n");
  210. size_t n_constraints = 5 * N + find_obs * N;
  211. Dvector constraints_lowerbound(n_constraints);
  212. Dvector constraints_upperbound(n_constraints);
  213. for (int i = 0; i < n_constraints; i++) {
  214. constraints_lowerbound[i] = 0;
  215. constraints_upperbound[i] = 0;
  216. }
  217. //// acc v
  218. for (int i = nv; i < nv + N; i++) {
  219. constraints_lowerbound[i] = -max_acc_line_velocity;
  220. constraints_upperbound[i] = max_acc_line_velocity;
  221. }
  222. //// acc ndlt
  223. for (int i = ndlt; i < ndlt + N; i++) {
  224. constraints_lowerbound[i] = -max_acc_dlt;
  225. constraints_upperbound[i] = max_acc_dlt;
  226. }
  227. // 与障碍物保持距离的约束
  228. if (find_obs) {
  229. for (int i = nobs; i < nobs + N; ++i) {
  230. constraints_lowerbound[i] = 1.0;
  231. constraints_upperbound[i] = 1e19;
  232. }
  233. }
  234. //限制最小转弯半径,
  235. /*for(int i=nwmg;i<nwmg+N;++i)
  236. {
  237. constraints_lowerbound[i] = 0;
  238. constraints_upperbound[i] = 1.0/(radius*radius);
  239. }*/
  240. if (line_velocity > max_velocity_) {
  241. line_velocity = max_velocity_;
  242. }
  243. if (line_velocity < -max_velocity_) {
  244. line_velocity = -max_velocity_;
  245. }
  246. if (angular > max_dlt) {
  247. angular = max_dlt;
  248. }
  249. if (angular < -max_dlt) {
  250. angular = -max_dlt;
  251. }
  252. Eigen::VectorXd statu_velocity(2 + 3*find_obs);
  253. statu_velocity[0] = line_velocity;
  254. statu_velocity[1] = angular;
  255. if (find_obs) {
  256. statu_velocity[2]= obs_relative_pose_.x();
  257. statu_velocity[3] = obs_relative_pose_.y();
  258. statu_velocity[4] = obs_relative_pose_.theta();
  259. }
  260. Eigen::VectorXd condition(6);
  261. condition << dt, ref_velocity, obs_w_, obs_h_, targetPoseInAGV.x(), targetPoseInAGV.y();
  262. FG_eval_half_agv fg_eval(coef, statu_velocity, condition);
  263. // options for IPOPT solver
  264. std::string options;
  265. // Uncomment this if you'd like more print information
  266. options += "Integer print_level 0\n";
  267. options += "Sparse true forward\n";
  268. options += "Sparse true reverse\n";
  269. options += "Numeric max_cpu_time 0.5\n";
  270. // place to return solution
  271. CppAD::ipopt::solve_result<Dvector> solution;
  272. // solve the problem
  273. CppAD::ipopt::solve<Dvector, FG_eval_half_agv>(
  274. options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
  275. constraints_upperbound, fg_eval, solution);
  276. auto now = std::chrono::steady_clock::now();
  277. auto duration = std::chrono::duration_cast<std::chrono::microseconds>(now - start);
  278. double time =
  279. double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den;
  280. // invalid_number_detected
  281. if (solution.status != CppAD::ipopt::solve_result<Dvector>::success) {
  282. printf(" mpc failed statu : %d input: %.4f %.5f(%.5f) max_v:%f\n", solution.status, line_velocity,
  283. wmg, angular, max_velocity_);
  284. if (solution.status == CppAD::ipopt::solve_result<Dvector>::local_infeasibility)
  285. return no_solution;
  286. return failed;
  287. }
  288. // Cost
  289. auto cost = solution.obj_value;
  290. out.clear();
  291. double solve_velocity = solution.x[nv];
  292. double solve_angular = solution.x[ndlt];
  293. //纠正角速度/线速度,使其满足最小转弯半径
  294. double correct_angular = solve_angular;
  295. if ((solve_velocity * solve_velocity) / (solve_angular * solve_angular + 1e-9) < (radius * radius)) {
  296. correct_angular = fabs(line_velocity) / radius;
  297. if (solve_angular < 0) correct_angular = -correct_angular;
  298. }
  299. ///-----
  300. printf("input:%.4f %.5f(%.5f) output:%.4f %.5f(%.5f) ref:%.3f max_v:%f time:%.3f\n",
  301. line_velocity, wmg, angular, solve_velocity, solve_angular, correct_angular,
  302. ref_velocity, max_velocity_, time);
  303. /*if(solve_velocity>=0 && solve_velocity<min_velocity_)
  304. solve_velocity=min_velocity_;
  305. if(solve_velocity<0 && solve_velocity>-min_velocity_)
  306. solve_velocity=-min_velocity_;*/
  307. out.push_back(solve_velocity);
  308. out.push_back(correct_angular);
  309. //计算预测轨迹
  310. optimize_trajectory.clear();
  311. for (int i = 0; i < N; ++i) {
  312. Pose2d pose(solution.x[nx + i], solution.x[ny + i], solution.x[nth + i]);
  313. optimize_trajectory.push_point(pose_agv + pose.rotate(pose_agv.theta()));
  314. }
  315. return success;
  316. }
  317. bool LoadedMPC::filte_Path(const Pose2d &point, Pose2d target, Trajectory trajectory,
  318. std::vector<Pose2d> &poses, int point_num) {
  319. double gradient = 0;
  320. if (fabs((target - point).x()) == 0)
  321. gradient = 200.0;
  322. else
  323. gradient = (target - point).y() / (target - point).x();
  324. double theta = gradient2theta(gradient, target.x() - point.x() >= 0);
  325. if (trajectory.size() < 2)
  326. return false;
  327. poses.clear();
  328. for (int i = 0; i < trajectory.size(); i++) {
  329. // 平移加反向旋转到小车坐标系
  330. Pose2d offset = trajectory[i] - point;
  331. double x = offset.x();
  332. double y = offset.y();
  333. double trans_x = x * cos(-theta) - y * sin(-theta);
  334. double trans_y = x * sin(-theta) + y * cos(-theta);
  335. if (trans_x >= 0 && poses.size() < point_num) {
  336. // 旋转到原坐标系
  337. float nx = trans_x * cos(theta) - trans_y * sin(theta);
  338. float ny = trans_x * sin(theta) + trans_y * cos(theta);
  339. Pose2d pose(nx + point.x(), ny + point.y(), trajectory[i].theta());
  340. poses.push_back(pose);
  341. }
  342. }
  343. int size = poses.size();
  344. if (size < point_num) {
  345. //一个点都没有,则以当前点开始,反向取点
  346. float dl = -0.1;
  347. Pose2d last = point;
  348. if (size >= 1) {
  349. //从最后点到最后一点均匀选取
  350. last = poses[size - 1]; //
  351. dl = 0.1;
  352. }
  353. float dx = cos(last.theta()) * dl;
  354. float dy = sin(last.theta()) * dl;
  355. for (int i = 1; i < point_num - size + 1; ++i)
  356. poses.push_back(Pose2d(last.x() + dx * i, last.y() + dy * i, last.theta()));
  357. }
  358. return true;
  359. }
  360. Eigen::VectorXd LoadedMPC::fit_path(const std::vector<Pose2d> &trajectory) {
  361. int order = 3;
  362. assert(order >= 1 && order <= trajectory.size() - 1);
  363. Eigen::MatrixXd A(trajectory.size(), order + 1);
  364. Eigen::VectorXd yvals(trajectory.size());
  365. for (int i = 0; i < trajectory.size(); i++) {
  366. A(i, 0) = 1.0;
  367. yvals[i] = trajectory[i].y();
  368. }
  369. for (int j = 0; j < trajectory.size(); j++) {
  370. for (int i = 0; i < order; i++) {
  371. A(j, i + 1) = A(j, i) * trajectory[j].x();
  372. }
  373. }
  374. auto Q = A.householderQr();
  375. auto result = Q.solve(yvals);
  376. return result;
  377. }