loaded_mpc.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. //
  2. // Created by zx on 22-12-1.
  3. //
  4. #include "loaded_mpc.h"
  5. #include <chrono>
  6. #include <cppad/cppad.hpp>
  7. #include <cppad/ipopt/solve.hpp>
  8. size_t N = 20; //优化考虑后面多少步
  9. size_t nx = 0;
  10. size_t ny = nx + N;
  11. size_t nth = ny + N;
  12. size_t nv = nth + N;
  13. size_t ndlt = nv + N;
  14. size_t nobs=ndlt+N;
  15. size_t nwmg=nobs+N;
  16. class FG_eval_half_agv {
  17. public:
  18. // Fitted polynomial coefficients
  19. Eigen::VectorXd m_coeffs; //曲线方程
  20. Eigen::VectorXd m_statu; //当前状态
  21. Eigen::VectorXd m_condition; //搜索条件参数
  22. FG_eval_half_agv(Eigen::VectorXd coeffs,Eigen::VectorXd statu,Eigen::VectorXd condition) {
  23. m_coeffs=coeffs;
  24. m_statu=statu;
  25. m_condition=condition;
  26. }
  27. typedef CPPAD_TESTVECTOR(CppAD::AD<double>) ADvector;
  28. void operator()(ADvector& fg, const ADvector& vars) {
  29. fg[0] = 0;
  30. double dt=m_condition[0];
  31. double ref_v=m_condition[1];
  32. double v=m_statu[0];
  33. double delta=m_statu[1];
  34. double obs_x=m_statu[2];
  35. double obs_y=m_statu[3];
  36. double obs_distance=sqrt(obs_x*obs_x+obs_y*obs_y);
  37. // Reference State Cost
  38. // Below defines the cost related the reference state and
  39. // any anything you think may be beneficial.
  40. // Weights for how "important" each cost is - can be tuned
  41. const double y_cost_weight = 5000;
  42. const double th_cost_weight = 4000;
  43. const double v_cost_weight = 1000;
  44. const double vth_cost_weight = 1000;
  45. const double a_cost_weight = 1;
  46. const double ath_cost_weight=100;
  47. const double obs_distance_weight=1000.0;
  48. // Cost for CTE, psi error and velocity
  49. for (int t = 0; t < N; t++) {
  50. CppAD::AD<double> xt=vars[nx+t];
  51. CppAD::AD<double> fx = m_coeffs[0] + m_coeffs[1] * xt + m_coeffs[2] * pow(xt, 2) + m_coeffs[3] * pow(xt, 3);
  52. fg[0] += y_cost_weight * CppAD::pow(vars[ny+t]-fx, 2);
  53. //朝向loss
  54. //CppAD::AD<double> fth = CppAD::atan(m_coeffs[1] + 2*m_coeffs[2]*xt + 3*m_coeffs[3]*pow(xt,2));
  55. //fg[0] += th_cost_weight * CppAD::pow(vars[nth + t]-fth, 2);
  56. /*CppAD::AD<double> gy = CppAD::atan(m_coeffs[1] + 2*m_coeffs[2]*xt + 3*m_coeffs[3]*pow(xt,2));
  57. CppAD::AD<double> cx=CppAD::cos(vars[nth + t]);
  58. CppAD::AD<double> cy=CppAD::sin(vars[nth + t]);
  59. CppAD::AD<double> dot=(cx+cy*gy)/CppAD::sqrt(gy*gy+1);
  60. fg[0] += th_cost_weight * CppAD::pow(CppAD::acos(dot),2);*/
  61. //目标速度loss
  62. fg[0]+=v_cost_weight*CppAD::pow(vars[nv+t]-ref_v,2);
  63. //loss 加上车位姿与障碍物的距离
  64. /*if(obs_distance<4.0)
  65. fg[0]+=obs_distance_weight*(16.0-(CppAD::pow(vars[nx+t]-obs_x,2)));*/
  66. }
  67. // Costs for steering (delta) and acceleration (a)
  68. for (int t = 0; t < N-1; t++) {
  69. //速度,加速度,前轮角 weight loss
  70. fg[0] += vth_cost_weight * CppAD::pow(vars[ndlt+t], 2);
  71. fg[0] += a_cost_weight * CppAD::pow(vars[nv + t+1]-vars[nv+t], 2);
  72. fg[0] += ath_cost_weight * CppAD::pow(vars[ndlt+t+1]-vars[ndlt+t], 2);
  73. }
  74. /////////////////////
  75. fg[1 + nx] = vars[nx]-vars[nv]*dt;
  76. fg[1 + ny] = vars[ny];
  77. //CppAD::AD<double> w0=vars[nv]/wheelbase*CppAD::tan(vars[ndlt]);
  78. fg[1 + nth] = vars[nth]-vars[ndlt]*dt;
  79. //位姿约束
  80. for (int t = 1; t < N; t++) {
  81. // State at time t + 1
  82. CppAD::AD<double> x1 = vars[nx + t];
  83. CppAD::AD<double> y1 = vars[ny + t];
  84. CppAD::AD<double> th1 = vars[nth + t];
  85. // State at time t
  86. CppAD::AD<double> x0 = vars[nx + t -1];
  87. CppAD::AD<double> y0 = vars[ny + t -1];
  88. CppAD::AD<double> th0 = vars[nth + t-1];
  89. CppAD::AD<double> v0 = vars[nv + t-1];
  90. //CppAD::AD<double> w_0=vars[nv+t-1]/wheelbase*CppAD::tan(vars[ndlt+t-1]);
  91. // Setting up the rest of the model constraints
  92. fg[1 + nx + t] = x1 - (x0 + v0 * CppAD::cos(th0) * dt);
  93. fg[1 + ny + t] = y1 - (y0 + v0 * CppAD::sin(th0) * dt);
  94. fg[1 + nth + t] = th1 - (th0 + vars[ndlt+t-1] * dt);
  95. }
  96. //加速度和dlt约束
  97. fg[1 + nv]=(vars[nv]-v)/dt;
  98. fg[1+ndlt]=(vars[ndlt]-delta)/dt;
  99. for(int t=1;t<N;++t)
  100. {
  101. fg[1+nv+t]=(vars[nv+t]-vars[nv+t-1])/dt;
  102. fg[1+ndlt+t]=(vars[ndlt+t]-vars[ndlt+t-1])/dt;
  103. }
  104. //与障碍物的距离
  105. for(int t=0;t<N;++t)
  106. {
  107. fg[1+nobs+t]=CppAD::pow(vars[nx+t]-obs_x,2)+CppAD::pow(vars[ny+t]-obs_y,2);
  108. }
  109. //转弯半径
  110. /*for(int t=0;t<N;++t)
  111. {
  112. fg[1+nwmg+t]=CppAD::pow(vars[ndlt+t],2)/(CppAD::pow(vars[nv+t],2)+1e-10);
  113. }*/
  114. }
  115. };
  116. LoadedMPC::LoadedMPC(const Pose2d& obs,double min_velocity,double max_velocity){
  117. min_velocity_=min_velocity;
  118. max_velocity_=max_velocity;
  119. obs_relative_pose_=obs;
  120. }
  121. LoadedMPC::~LoadedMPC(){}
  122. bool LoadedMPC::solve(Trajectory trajectory, Pose2d target,Eigen::VectorXd statu,MPC_parameter mpc_param,
  123. std::vector<double>& out,Trajectory& select_traj,Trajectory& optimize_trajectory)
  124. {
  125. auto start=std::chrono::steady_clock::now();
  126. // State vector holds all current values neede for vars below
  127. Pose2d pose_agv = Pose2d(statu[0], statu[1], statu[2]);
  128. double line_velocity = statu[3];
  129. double wmg = statu[4];
  130. //纠正角速度/线速度,使其满足最小转弯半径
  131. double angular=wmg;
  132. double radius=mpc_param.shortest_radius * (1.0/sqrt(line_velocity*line_velocity+1e-10));
  133. if( (line_velocity*line_velocity)/(wmg*wmg+1e-9) < (radius*radius)) {
  134. angular = fabs(line_velocity) / radius;
  135. if (wmg < 0) angular = -angular;
  136. }
  137. double max_wmg=0.5/radius;//fabs(line_velocity) / radius;
  138. std::vector<Pose2d> filte_poses;
  139. if (filte_Path(pose_agv, target, trajectory, filte_poses, 10) == false)
  140. {
  141. printf( "filte path failed ...\n");
  142. return false;
  143. }
  144. select_traj= Trajectory(filte_poses);
  145. //将选中点移动到小车坐标系
  146. std::vector<Pose2d> transform_poses;
  147. for (int i = 0; i < filte_poses.size(); i++)
  148. {
  149. double x = filte_poses[i].x() - pose_agv.x();
  150. double y = filte_poses[i].y() - pose_agv.y();
  151. transform_poses.push_back(Pose2d(x,y,0).rotate(-pose_agv.theta()));
  152. }
  153. Eigen::VectorXd coef = fit_path(transform_poses);
  154. //优化
  155. bool ok = true;
  156. typedef CPPAD_TESTVECTOR(double) Dvector;
  157. //根据当前点和目标点距离,计算目标速度
  158. double ref_velocity = Pose2d::distance(pose_agv, target) / 2.5;
  159. if(ref_velocity<0.05)
  160. ref_velocity=0.05;
  161. //目标点与起点的连线 朝向与启动朝向 > M_PI/2.0
  162. Pose2d targetPoseInAGV=Pose2d::relativePose(target,pose_agv);
  163. //std::cout<<"target:"<<target<<", agv:"<<pose_agv<<", relative:"<<targetPoseInAGV<<std::endl;
  164. if(targetPoseInAGV.x()<0)
  165. ref_velocity = -ref_velocity;
  166. double dt = mpc_param.dt;
  167. //printf("min_v:%f max_v:%f\n",min_velocity_,max_velocity_);
  168. double max_dlt=max_wmg;//5*M_PI/180.0;
  169. double max_acc_line_velocity=mpc_param.acc_velocity;
  170. double max_acc_dlt=mpc_param.acc_angular*M_PI/180.0;
  171. size_t n_vars = N * 5;
  172. Dvector vars(n_vars);
  173. for (int i = 0; i < n_vars; i++)
  174. {
  175. vars[i] = 0.0;
  176. }
  177. Dvector vars_lowerbound(n_vars);
  178. Dvector vars_upperbound(n_vars);
  179. for (int i = 0; i < n_vars; i++)
  180. {
  181. vars_lowerbound[i] = -1.0e19;
  182. vars_upperbound[i] = 1.0e19;
  183. }
  184. //// limit v
  185. for (int i = nv; i < nv + N; i++)
  186. {
  187. vars_lowerbound[i] = -max_velocity_;
  188. vars_upperbound[i] = max_velocity_;
  189. }
  190. ////limint dlt
  191. for (int i = ndlt; i < ndlt + N; i++)
  192. {
  193. vars_lowerbound[i] = -max_dlt;
  194. vars_upperbound[i] = max_dlt;
  195. }
  196. // Lower and upper limits for the constraints
  197. size_t n_constraints = N * (5+1);
  198. Dvector constraints_lowerbound(n_constraints);
  199. Dvector constraints_upperbound(n_constraints);
  200. for (int i = 0; i < n_constraints; i++)
  201. {
  202. constraints_lowerbound[i] = 0;
  203. constraints_upperbound[i] = 0;
  204. }
  205. //// acc v
  206. for (int i = nv; i < nv + N; i++)
  207. {
  208. constraints_lowerbound[i] = -max_acc_line_velocity;
  209. constraints_upperbound[i] = max_acc_line_velocity;
  210. }
  211. //// acc ndlt
  212. for (int i = ndlt; i < ndlt + N; i++)
  213. {
  214. constraints_lowerbound[i] = -max_acc_dlt;
  215. constraints_upperbound[i] = max_acc_dlt;
  216. }
  217. // 与障碍物保持距离
  218. double dobs=1.6;
  219. for(int i=nobs;i<nobs+N;++i)
  220. {
  221. constraints_lowerbound[i] = dobs*dobs;//pow(float(nobs+N-i)/float(N)*dobs,2);
  222. constraints_upperbound[i] = 1e19;
  223. }
  224. //限制最小转弯半径,
  225. /*for(int i=nwmg;i<nwmg+N;++i)
  226. {
  227. constraints_lowerbound[i] = 0;
  228. constraints_upperbound[i] = 1.0/(radius*radius);
  229. }*/
  230. Eigen::VectorXd statu_velocity(4);
  231. if(line_velocity>max_velocity_)
  232. {
  233. line_velocity=max_velocity_;
  234. //printf(" input +v limited\n");
  235. }
  236. if(line_velocity<-max_velocity_)
  237. {
  238. line_velocity=-max_velocity_;
  239. //printf(" input -v limited\n");
  240. }
  241. if(angular>max_dlt)
  242. {
  243. angular = max_dlt;
  244. printf(" input +dlt limited\n");
  245. }
  246. if(angular<-max_dlt)
  247. {
  248. angular = -max_dlt;
  249. printf(" input -dlt limited\n");
  250. }
  251. statu_velocity << line_velocity, angular,obs_relative_pose_.x(),obs_relative_pose_.y();
  252. Eigen::VectorXd condition(2);
  253. condition << dt, ref_velocity;
  254. FG_eval_half_agv fg_eval(coef, statu_velocity, condition);
  255. // options for IPOPT solver
  256. std::string options;
  257. // Uncomment this if you'd like more print information
  258. options += "Integer print_level 0\n";
  259. options += "Sparse true forward\n";
  260. options += "Sparse true reverse\n";
  261. options += "Numeric max_cpu_time 0.5\n";
  262. // place to return solution
  263. CppAD::ipopt::solve_result<Dvector> solution;
  264. // solve the problem
  265. CppAD::ipopt::solve<Dvector, FG_eval_half_agv>(
  266. options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
  267. constraints_upperbound, fg_eval, solution);
  268. auto now=std::chrono::steady_clock::now();
  269. auto duration = std::chrono::duration_cast<std::chrono::microseconds>(now - start);
  270. double time = double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den;
  271. ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
  272. if (ok == false)
  273. {
  274. printf(" mpc failed statu : %d input: %.4f %.5f(%.5f) relative:(%f,%f) \n",solution.status,line_velocity,
  275. wmg,angular,obs_relative_pose_.x(),obs_relative_pose_.y());
  276. return false;
  277. }
  278. // Cost
  279. auto cost = solution.obj_value;
  280. out.clear();
  281. double solve_velocity=solution.x[nv];
  282. double solve_angular=solution.x[ndlt];
  283. //纠正角速度/线速度,使其满足最小转弯半径
  284. double correct_angular=solve_angular;
  285. if( (solve_velocity*solve_velocity)/(solve_angular*solve_angular+1e-9) < (radius*radius)) {
  286. correct_angular = fabs(line_velocity) / radius;
  287. if (solve_angular < 0) correct_angular = -correct_angular;
  288. }
  289. ///-----
  290. printf("input : %.4f %.5f(%.5f) output : %.4f %.5f(%.5f) ref : %.3f relative:(%f,%f) time:%.3f\n",
  291. line_velocity,wmg,angular,solve_velocity,solve_angular,correct_angular,
  292. ref_velocity,targetPoseInAGV.x(),targetPoseInAGV.y(),time);
  293. if(solve_velocity>=0 && solve_velocity<min_velocity_)
  294. solve_velocity=min_velocity_;
  295. if(solve_velocity<0 && solve_velocity>-min_velocity_)
  296. solve_velocity=-min_velocity_;
  297. out.push_back(solve_velocity);
  298. out.push_back(correct_angular);
  299. //计算预测轨迹
  300. optimize_trajectory.clear();
  301. for (int i = 0; i < N; ++i)
  302. {
  303. Pose2d pose(solution.x[nx + i], solution.x[ny + i], solution.x[nth + i]);
  304. optimize_trajectory.push_point(pose_agv+pose.rotate(pose_agv.theta()));
  305. }
  306. return true;
  307. }
  308. bool LoadedMPC::filte_Path(const Pose2d& point,Pose2d target,Trajectory trajectory,
  309. std::vector<Pose2d>& poses,int point_num)
  310. {
  311. double gradient=0;
  312. if(fabs((target-point).x())==0)
  313. gradient=200.0;
  314. else
  315. gradient= (target-point).y()/(target-point).x();
  316. double theta=gradient2theta(gradient,target.x()-point.x()>=0);
  317. if(trajectory.size() < point_num)
  318. return false;
  319. poses.clear();
  320. for (int i = 0; i < trajectory.size(); i++)
  321. {
  322. // 平移加反向旋转到小车坐标系
  323. Pose2d offset=trajectory[i]-point;
  324. double x = offset.x();
  325. double y = offset.y();
  326. double trans_x = x * cos(-theta) - y * sin(-theta);
  327. double trans_y = x * sin(-theta) + y * cos(-theta);
  328. if (trans_x>=0 && poses.size() < point_num)
  329. {
  330. // 旋转到原坐标系
  331. float nx=trans_x * cos(theta) - trans_y * sin(theta);
  332. float ny=trans_x*sin(theta)+trans_y*cos(theta);
  333. Pose2d pose(nx+point.x(),ny+point.y(),trajectory[i].theta());
  334. poses.push_back(pose);
  335. }
  336. }
  337. int size=poses.size();
  338. if(size<point_num)
  339. {
  340. //一个点都没有,则以当前点开始,反向取点
  341. float dl=-0.1;
  342. Pose2d last=point;
  343. if(size>=1){
  344. //从最后点到最后一点均匀选取
  345. last=poses[size-1]; //
  346. dl=0.1;
  347. }
  348. float dx=cos(last.theta())*dl;
  349. float dy=sin(last.theta())*dl;
  350. for(int i=1;i<point_num-size+1;++i)
  351. poses.push_back(Pose2d(last.x()+dx*i,last.y()+dy*i,last.theta()));
  352. }
  353. return true;
  354. }
  355. Eigen::VectorXd LoadedMPC::fit_path(const std::vector<Pose2d>& trajectory)
  356. {
  357. int order=3;
  358. assert(order >= 1 && order <= trajectory.size() - 1);
  359. Eigen::MatrixXd A(trajectory.size(), order + 1);
  360. Eigen::VectorXd yvals(trajectory.size());
  361. for (int i = 0; i < trajectory.size(); i++) {
  362. A(i, 0) = 1.0;
  363. yvals[i]=trajectory[i].y();
  364. }
  365. for (int j = 0; j < trajectory.size(); j++) {
  366. for (int i = 0; i < order; i++) {
  367. A(j, i + 1) = A(j, i) * trajectory[j].x();
  368. }
  369. }
  370. auto Q = A.householderQr();
  371. auto result = Q.solve(yvals);
  372. return result;
  373. }