|
@@ -15,431 +15,418 @@ size_t nth = ny + N;
|
|
|
size_t nv = nth + N;
|
|
|
size_t ndlt = nv + N;
|
|
|
|
|
|
-size_t nobs=ndlt+N;
|
|
|
+size_t nobs = ndlt + N;
|
|
|
|
|
|
class FG_eval_half_agv {
|
|
|
- public:
|
|
|
+public:
|
|
|
// Fitted polynomial coefficients
|
|
|
Eigen::VectorXd m_coeffs; //曲线方程
|
|
|
Eigen::VectorXd m_statu; //当前状态
|
|
|
Eigen::VectorXd m_condition; //搜索条件参数
|
|
|
- FG_eval_half_agv(Eigen::VectorXd coeffs,Eigen::VectorXd statu,Eigen::VectorXd condition) {
|
|
|
- m_coeffs=coeffs;
|
|
|
- m_statu=statu;
|
|
|
- m_condition=condition;
|
|
|
+ FG_eval_half_agv(Eigen::VectorXd coeffs, Eigen::VectorXd statu, Eigen::VectorXd condition) {
|
|
|
+ m_coeffs = coeffs;
|
|
|
+ m_statu = statu;
|
|
|
+ m_condition = condition;
|
|
|
}
|
|
|
|
|
|
typedef CPPAD_TESTVECTOR(CppAD::AD<double>) ADvector;
|
|
|
- void operator()(ADvector& fg, const ADvector& vars) {
|
|
|
-
|
|
|
- fg[0] = 0;
|
|
|
- double dt=m_condition[0];
|
|
|
- double ref_v=m_condition[1];
|
|
|
- double obs_w=m_condition[2];
|
|
|
- double obs_h=m_condition[3];
|
|
|
- double target_x=m_condition[4];
|
|
|
- double target_y=m_condition[5];
|
|
|
-
|
|
|
- double v=m_statu[0];
|
|
|
- double delta=m_statu[1];
|
|
|
-
|
|
|
- // Weights for how "important" each cost is - can be tuned
|
|
|
- const double y_cost_weight = 1000;
|
|
|
- const double th_cost_weight = 4000;
|
|
|
- const double v_cost_weight = 5000;
|
|
|
- const double vth_cost_weight = 1000;
|
|
|
- const double a_cost_weight = 1;
|
|
|
- const double ath_cost_weight=10;
|
|
|
- const double obs_distance_weight=5000.0;
|
|
|
-
|
|
|
- // Cost for CTE, psi error and velocity
|
|
|
- for (int t = 0; t < N; t++) {
|
|
|
- CppAD::AD<double> xt=vars[nx+t];
|
|
|
- CppAD::AD<double> fx = m_coeffs[0] + m_coeffs[1] * xt + m_coeffs[2] * pow(xt, 2) + m_coeffs[3] * pow(xt, 3);
|
|
|
- fg[0] += y_cost_weight * CppAD::pow(vars[ny+t]-fx, 2);
|
|
|
- //fg[0]+=v_cost_weight*(CppAD::pow(vars[nx+t]-target_x,2)+CppAD::pow(vars[ny+t]-target_y,2));
|
|
|
- //目标速度loss
|
|
|
- fg[0]+=v_cost_weight*CppAD::pow(vars[nv+t]-ref_v,2);
|
|
|
-
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- for (int t = 0; t < N-1; t++) {
|
|
|
- //速度,加速度,前轮角 weight loss
|
|
|
- fg[0] += vth_cost_weight * CppAD::pow(vars[ndlt+t], 2);
|
|
|
- fg[0] += a_cost_weight * CppAD::pow(vars[nv + t+1]-vars[nv+t], 2);
|
|
|
- fg[0] += ath_cost_weight * CppAD::pow(vars[ndlt+t+1]-vars[ndlt+t], 2);
|
|
|
- }
|
|
|
-
|
|
|
- /////////////////////
|
|
|
- fg[1 + nx] = vars[nx]-vars[nv]*dt;
|
|
|
- fg[1 + ny] = vars[ny];
|
|
|
- //CppAD::AD<double> w0=vars[nv]/wheelbase*CppAD::tan(vars[ndlt]);
|
|
|
- fg[1 + nth] = vars[nth]-vars[ndlt]*dt;
|
|
|
-
|
|
|
- //位姿约束
|
|
|
- for (int t = 1; t < N; t++) {
|
|
|
- // State at time t + 1
|
|
|
- CppAD::AD<double> x1 = vars[nx + t];
|
|
|
- CppAD::AD<double> y1 = vars[ny + t];
|
|
|
- CppAD::AD<double> th1 = vars[nth + t];
|
|
|
-
|
|
|
- // State at time t
|
|
|
- CppAD::AD<double> x0 = vars[nx + t -1];
|
|
|
- CppAD::AD<double> y0 = vars[ny + t -1];
|
|
|
- CppAD::AD<double> th0 = vars[nth + t-1];
|
|
|
- CppAD::AD<double> v0 = vars[nv + t-1];
|
|
|
-
|
|
|
- // Setting up the rest of the model constraints
|
|
|
- fg[1 + nx + t] = x1 - (x0 + v0 * CppAD::cos(th0) * dt);
|
|
|
- fg[1 + ny + t] = y1 - (y0 + v0 * CppAD::sin(th0) * dt);
|
|
|
- fg[1 + nth + t] = th1 - (th0 + vars[ndlt+t-1] * dt);
|
|
|
-
|
|
|
- }
|
|
|
- //加速度和dlt约束
|
|
|
- fg[1 + nv]=(vars[nv]-v)/dt;
|
|
|
- fg[1+ndlt]=(vars[ndlt]-delta)/dt;
|
|
|
- for(int t=1;t<N;++t)
|
|
|
- {
|
|
|
- fg[1+nv+t]=(vars[nv+t]-vars[nv+t-1])/dt;
|
|
|
- fg[1+ndlt+t]=(vars[ndlt+t]-vars[ndlt+t-1])/dt;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- if(m_statu.size()==2+16){
|
|
|
- //与障碍物的距离
|
|
|
- for(int i=0;i<8;++i) {
|
|
|
- double ox=m_statu[2+i*2];
|
|
|
- double oy=m_statu[2+i*2+1];
|
|
|
- for (int t = 0; t < N; ++t) {
|
|
|
- /*第i点的矩形方程为: {[(x-xi)cos(Θi)-(y-yi)sin(Θi)]/1.35}**8 +
|
|
|
- * {[(x-xi)sin(Θi)+(y-yi)cos(Θi)]/0.75}**8 = 1.0
|
|
|
- *
|
|
|
- * */
|
|
|
- CppAD::AD<double> ra=(ox-vars[nx+t])*CppAD::cos(vars[nth+t]) -(oy-vars[ny+t])*CppAD::sin(vars[nth+t]);
|
|
|
- CppAD::AD<double> rb=(ox-vars[nx+t])*CppAD::sin(vars[nth+t]) +(oy-vars[ny+t])*CppAD::cos(vars[nth+t]);
|
|
|
- fg[1 + nobs + N*i+t] = CppAD::pow(ra/obs_w,8)+CppAD::pow(rb/obs_h,8);
|
|
|
- }
|
|
|
+
|
|
|
+ void operator()(ADvector &fg, const ADvector &vars) {
|
|
|
+
|
|
|
+ fg[0] = 0;
|
|
|
+ double dt = m_condition[0];
|
|
|
+ double ref_v = m_condition[1];
|
|
|
+ double obs_w = m_condition[2];
|
|
|
+ double obs_h = m_condition[3];
|
|
|
+ double target_x = m_condition[4];
|
|
|
+ double target_y = m_condition[5];
|
|
|
+
|
|
|
+ double v = m_statu[0];
|
|
|
+ double delta = m_statu[1];
|
|
|
+
|
|
|
+ // Weights for how "important" each cost is - can be tuned
|
|
|
+ const double y_cost_weight = 1000;
|
|
|
+ const double th_cost_weight = 4000;
|
|
|
+ const double v_cost_weight = 5000;
|
|
|
+ const double vth_cost_weight = 1000;
|
|
|
+ const double a_cost_weight = 1;
|
|
|
+ const double ath_cost_weight = 10;
|
|
|
+ const double obs_distance_weight = 5000.0;
|
|
|
+
|
|
|
+ // Cost for CTE, psi error and velocity
|
|
|
+ for (int t = 0; t < N; t++) {
|
|
|
+ CppAD::AD<double> xt = vars[nx + t];
|
|
|
+ CppAD::AD<double> fx = m_coeffs[0] + m_coeffs[1] * xt + m_coeffs[2] * pow(xt, 2) + m_coeffs[3] * pow(xt, 3);
|
|
|
+ fg[0] += y_cost_weight * CppAD::pow(vars[ny + t] - fx, 2);
|
|
|
+ //fg[0]+=v_cost_weight*(CppAD::pow(vars[nx+t]-target_x,2)+CppAD::pow(vars[ny+t]-target_y,2));
|
|
|
+ //目标速度loss
|
|
|
+ fg[0] += v_cost_weight * CppAD::pow(vars[nv + t] - ref_v, 2);
|
|
|
+
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int t = 0; t < N - 1; t++) {
|
|
|
+ //速度,加速度,前轮角 weight loss
|
|
|
+ fg[0] += vth_cost_weight * CppAD::pow(vars[ndlt + t], 2);
|
|
|
+ fg[0] += a_cost_weight * CppAD::pow(vars[nv + t + 1] - vars[nv + t], 2);
|
|
|
+ fg[0] += ath_cost_weight * CppAD::pow(vars[ndlt + t + 1] - vars[ndlt + t], 2);
|
|
|
+ }
|
|
|
+
|
|
|
+ /////////////////////
|
|
|
+ fg[1 + nx] = vars[nx] - vars[nv] * dt;
|
|
|
+ fg[1 + ny] = vars[ny];
|
|
|
+ //CppAD::AD<double> w0=vars[nv]/wheelbase*CppAD::tan(vars[ndlt]);
|
|
|
+ fg[1 + nth] = vars[nth] - vars[ndlt] * dt;
|
|
|
+
|
|
|
+ //位姿约束
|
|
|
+ for (int t = 1; t < N; t++) {
|
|
|
+ // State at time t + 1
|
|
|
+ CppAD::AD<double> x1 = vars[nx + t];
|
|
|
+ CppAD::AD<double> y1 = vars[ny + t];
|
|
|
+ CppAD::AD<double> th1 = vars[nth + t];
|
|
|
+
|
|
|
+ // State at time t
|
|
|
+ CppAD::AD<double> x0 = vars[nx + t - 1];
|
|
|
+ CppAD::AD<double> y0 = vars[ny + t - 1];
|
|
|
+ CppAD::AD<double> th0 = vars[nth + t - 1];
|
|
|
+ CppAD::AD<double> v0 = vars[nv + t - 1];
|
|
|
+
|
|
|
+ // Setting up the rest of the model constraints
|
|
|
+ fg[1 + nx + t] = x1 - (x0 + v0 * CppAD::cos(th0) * dt);
|
|
|
+ fg[1 + ny + t] = y1 - (y0 + v0 * CppAD::sin(th0) * dt);
|
|
|
+ fg[1 + nth + t] = th1 - (th0 + vars[ndlt + t - 1] * dt);
|
|
|
+
|
|
|
+ }
|
|
|
+ //加速度和dlt约束
|
|
|
+ fg[1 + nv] = (vars[nv] - v) / dt;
|
|
|
+ fg[1 + ndlt] = (vars[ndlt] - delta) / dt;
|
|
|
+ for (int t = 1; t < N; ++t) {
|
|
|
+ fg[1 + nv + t] = (vars[nv + t] - vars[nv + t - 1]) / dt;
|
|
|
+ fg[1 + ndlt + t] = (vars[ndlt + t] - vars[ndlt + t - 1]) / dt;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ if (m_statu.size() == 2 + 16) {
|
|
|
+ //与障碍物的距离
|
|
|
+ for (int i = 0; i < 8; ++i) {
|
|
|
+ double ox = m_statu[2 + i * 2];
|
|
|
+ double oy = m_statu[2 + i * 2 + 1];
|
|
|
+ for (int t = 0; t < N; ++t) {
|
|
|
+ /*第i点的矩形方程为: {[(x-xi)cos(Θi)-(y-yi)sin(Θi)]/1.35}**8 +
|
|
|
+ * {[(x-xi)sin(Θi)+(y-yi)cos(Θi)]/0.75}**8 = 1.0
|
|
|
+ *
|
|
|
+ * */
|
|
|
+ CppAD::AD<double> ra = (ox - vars[nx + t]) * CppAD::cos(vars[nth + t]) -
|
|
|
+ (oy - vars[ny + t]) * CppAD::sin(vars[nth + t]);
|
|
|
+ CppAD::AD<double> rb = (ox - vars[nx + t]) * CppAD::sin(vars[nth + t]) +
|
|
|
+ (oy - vars[ny + t]) * CppAD::cos(vars[nth + t]);
|
|
|
+ fg[1 + nobs + N * i + t] = CppAD::pow(ra / obs_w, 8) + CppAD::pow(rb / obs_h, 8);
|
|
|
+ }
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
}
|
|
|
};
|
|
|
|
|
|
-LoadedMPC::LoadedMPC(const Pose2d& obs,double obs_w,double obs_h,double min_velocity,double max_velocity){
|
|
|
- min_velocity_=min_velocity;
|
|
|
- max_velocity_=max_velocity;
|
|
|
- obs_relative_pose_=obs;
|
|
|
- obs_w_=obs_w;
|
|
|
- obs_h_=obs_h;
|
|
|
+LoadedMPC::LoadedMPC(const Pose2d &obs, double obs_w, double obs_h, double min_velocity, double max_velocity) {
|
|
|
+ min_velocity_ = min_velocity;
|
|
|
+ max_velocity_ = max_velocity;
|
|
|
+ obs_relative_pose_ = obs;
|
|
|
+ obs_w_ = obs_w;
|
|
|
+ obs_h_ = obs_h;
|
|
|
}
|
|
|
-LoadedMPC::~LoadedMPC(){}
|
|
|
-
|
|
|
-MpcError LoadedMPC::solve(Trajectory trajectory, Pose2d target,Eigen::VectorXd statu,MPC_parameter mpc_param,
|
|
|
- std::vector<double>& out,Trajectory& select_traj,Trajectory& optimize_trajectory)
|
|
|
-{
|
|
|
- auto start=std::chrono::steady_clock::now();
|
|
|
- // State vector holds all current values neede for vars below
|
|
|
- Pose2d pose_agv = Pose2d(statu[0], statu[1], statu[2]);
|
|
|
- double line_velocity = statu[3];
|
|
|
- double wmg = statu[4];
|
|
|
-
|
|
|
- //纠正角速度/线速度,使其满足最小转弯半径
|
|
|
- double angular=wmg;
|
|
|
- double radius=mpc_param.shortest_radius * (1.0/sqrt(line_velocity*line_velocity+1e-10));
|
|
|
- if( (line_velocity*line_velocity)/(wmg*wmg+1e-9) < (radius*radius)) {
|
|
|
- angular = fabs(line_velocity) / radius;
|
|
|
- if (wmg < 0) angular = -angular;
|
|
|
- }
|
|
|
- double max_wmg=0.5/radius;//fabs(line_velocity) / radius;
|
|
|
-
|
|
|
- std::vector<Pose2d> filte_poses;
|
|
|
- if (filte_Path(pose_agv, target, trajectory, filte_poses, 10) == false)
|
|
|
- {
|
|
|
- printf( "filte path failed ...\n");
|
|
|
- return failed;
|
|
|
- }
|
|
|
- select_traj= Trajectory(filte_poses);
|
|
|
-
|
|
|
- //将选中点移动到小车坐标系
|
|
|
- std::vector<Pose2d> transform_poses;
|
|
|
- for (int i = 0; i < filte_poses.size(); i++)
|
|
|
- {
|
|
|
- double x = filte_poses[i].x() - pose_agv.x();
|
|
|
- double y = filte_poses[i].y() - pose_agv.y();
|
|
|
- transform_poses.push_back(Pose2d(x,y,0).rotate(-pose_agv.theta()));
|
|
|
- }
|
|
|
-
|
|
|
- Eigen::VectorXd coef = fit_path(transform_poses);
|
|
|
-
|
|
|
- //优化
|
|
|
- typedef CPPAD_TESTVECTOR(double) Dvector;
|
|
|
-
|
|
|
- //根据当前点和目标点距离,计算目标速度
|
|
|
-
|
|
|
- double ref_velocity = Pose2d::distance(pose_agv, target) / 2.5;
|
|
|
- if(ref_velocity<0.1)
|
|
|
- ref_velocity=0.1;
|
|
|
- //目标点与起点的连线 朝向与启动朝向 > M_PI/2.0
|
|
|
-
|
|
|
- Pose2d targetPoseInAGV=Pose2d::relativePose(target,pose_agv);
|
|
|
- //std::cout<<"target:"<<target<<", agv:"<<pose_agv<<", relative:"<<targetPoseInAGV<<std::endl;
|
|
|
- if(targetPoseInAGV.x()<0)
|
|
|
- ref_velocity = -ref_velocity;
|
|
|
-
|
|
|
- double dt = mpc_param.dt;
|
|
|
-
|
|
|
- //printf("min_v:%f max_v:%f\n",min_velocity_,max_velocity_);
|
|
|
- double max_dlt=max_wmg;//5*M_PI/180.0;
|
|
|
- double max_acc_line_velocity=mpc_param.acc_velocity;
|
|
|
- double max_acc_dlt=mpc_param.acc_angular*M_PI/180.0;
|
|
|
-
|
|
|
- size_t n_vars = N * 5;
|
|
|
-
|
|
|
- Dvector vars(n_vars);
|
|
|
- for (int i = 0; i < n_vars; i++)
|
|
|
- {
|
|
|
- vars[i] = 0.0;
|
|
|
- }
|
|
|
-
|
|
|
- Dvector vars_lowerbound(n_vars);
|
|
|
- Dvector vars_upperbound(n_vars);
|
|
|
- for (int i = 0; i < n_vars; i++)
|
|
|
- {
|
|
|
- vars_lowerbound[i] = -1.0e19;
|
|
|
- vars_upperbound[i] = 1.0e19;
|
|
|
- }
|
|
|
-
|
|
|
- //// limit v
|
|
|
- for (int i = nv; i < nv + N; i++)
|
|
|
- {
|
|
|
- vars_lowerbound[i] = -max_velocity_;
|
|
|
- vars_upperbound[i] = max_velocity_;
|
|
|
- }
|
|
|
-
|
|
|
- ////limint dlt
|
|
|
- for (int i = ndlt; i < ndlt + N; i++)
|
|
|
- {
|
|
|
- vars_lowerbound[i] = -max_dlt;
|
|
|
- vars_upperbound[i] = max_dlt;
|
|
|
- }
|
|
|
-
|
|
|
- // Lower and upper limits for the constraints
|
|
|
- size_t n_constraints = N * 5;
|
|
|
- /*
|
|
|
- * 障碍物是否进入 碰撞检测范围内
|
|
|
- */
|
|
|
- float distance=Pose2d::distance(obs_relative_pose_,Pose2d(0,0,0));
|
|
|
- bool find_obs=false;
|
|
|
- if(distance<20){
|
|
|
- //printf(" mpc find obs ,w=%f,h=%f\n",obs_w_,obs_h_);
|
|
|
- find_obs=true;
|
|
|
- }
|
|
|
- if(find_obs) n_constraints = N * (5+8);
|
|
|
-
|
|
|
- Dvector constraints_lowerbound(n_constraints);
|
|
|
- Dvector constraints_upperbound(n_constraints);
|
|
|
- for (int i = 0; i < n_constraints; i++)
|
|
|
- {
|
|
|
- constraints_lowerbound[i] = 0;
|
|
|
- constraints_upperbound[i] = 0;
|
|
|
- }
|
|
|
- //// acc v
|
|
|
- for (int i = nv; i < nv + N; i++)
|
|
|
- {
|
|
|
- constraints_lowerbound[i] = -max_acc_line_velocity;
|
|
|
- constraints_upperbound[i] = max_acc_line_velocity;
|
|
|
- }
|
|
|
- //// acc ndlt
|
|
|
- for (int i = ndlt; i < ndlt + N; i++)
|
|
|
- {
|
|
|
- constraints_lowerbound[i] = -max_acc_dlt;
|
|
|
- constraints_upperbound[i] = max_acc_dlt;
|
|
|
- }
|
|
|
-
|
|
|
- // 与障碍物保持距离的约束
|
|
|
- if(find_obs) {
|
|
|
- for (int i = nobs; i < nobs + 8*N; ++i) {
|
|
|
- constraints_lowerbound[i] = 1.0;
|
|
|
- constraints_upperbound[i] = 1e19;
|
|
|
+
|
|
|
+LoadedMPC::~LoadedMPC() {}
|
|
|
+
|
|
|
+MpcError LoadedMPC::solve(Trajectory trajectory, Pose2d target, Eigen::VectorXd statu, MPC_parameter mpc_param,
|
|
|
+ std::vector<double> &out, Trajectory &select_traj, Trajectory &optimize_trajectory) {
|
|
|
+ auto start = std::chrono::steady_clock::now();
|
|
|
+ // State vector holds all current values neede for vars below
|
|
|
+ Pose2d pose_agv = Pose2d(statu[0], statu[1], statu[2]);
|
|
|
+ double line_velocity = statu[3];
|
|
|
+ double wmg = statu[4];
|
|
|
+
|
|
|
+ //纠正角速度/线速度,使其满足最小转弯半径
|
|
|
+ double angular = wmg;
|
|
|
+ double radius = mpc_param.shortest_radius * (1.0 / sqrt(line_velocity * line_velocity + 1e-10));
|
|
|
+ if ((line_velocity * line_velocity) / (wmg * wmg + 1e-9) < (radius * radius)) {
|
|
|
+ angular = fabs(line_velocity) / radius;
|
|
|
+ if (wmg < 0) angular = -angular;
|
|
|
}
|
|
|
- }
|
|
|
-
|
|
|
- //限制最小转弯半径,
|
|
|
- /*for(int i=nwmg;i<nwmg+N;++i)
|
|
|
- {
|
|
|
- constraints_lowerbound[i] = 0;
|
|
|
- constraints_upperbound[i] = 1.0/(radius*radius);
|
|
|
- }*/
|
|
|
-
|
|
|
- if(line_velocity>max_velocity_){
|
|
|
- line_velocity=max_velocity_;
|
|
|
- }
|
|
|
- if(line_velocity<-max_velocity_){
|
|
|
- line_velocity=-max_velocity_;
|
|
|
- }
|
|
|
- if(angular>max_dlt){
|
|
|
- angular = max_dlt;
|
|
|
- }
|
|
|
- if(angular<-max_dlt){
|
|
|
- angular = -max_dlt;
|
|
|
- }
|
|
|
-
|
|
|
- Eigen::VectorXd statu_velocity(2);
|
|
|
- if(find_obs){
|
|
|
- statu_velocity=Eigen::VectorXd(2+16);
|
|
|
-
|
|
|
- std::vector<Pose2d> vertexs=Pose2d::generate_rectangle_vertexs(obs_relative_pose_,obs_w_*2,obs_h_*2);
|
|
|
- for(int i=0;i<vertexs.size();++i){
|
|
|
- //std::cout<<"vetex:"<<vertexs[i]<<std::endl;
|
|
|
- statu_velocity[2+i*2]=vertexs[i].x();
|
|
|
- statu_velocity[2+i*2+1]=vertexs[i].y();
|
|
|
+ double max_wmg = 0.5 / radius;//fabs(line_velocity) / radius;
|
|
|
+
|
|
|
+ std::vector<Pose2d> filte_poses;
|
|
|
+ if (filte_Path(pose_agv, target, trajectory, filte_poses, 10) == false) {
|
|
|
+ printf("filte path failed ...\n");
|
|
|
+ return failed;
|
|
|
}
|
|
|
- }
|
|
|
- statu_velocity[0]= line_velocity;
|
|
|
- statu_velocity[1]=angular;
|
|
|
-
|
|
|
- Eigen::VectorXd condition(6);
|
|
|
- condition << dt, ref_velocity,obs_w_,obs_h_,targetPoseInAGV.x(),targetPoseInAGV.y();
|
|
|
- FG_eval_half_agv fg_eval(coef, statu_velocity, condition);
|
|
|
-
|
|
|
- // options for IPOPT solver
|
|
|
- std::string options;
|
|
|
- // Uncomment this if you'd like more print information
|
|
|
- options += "Integer print_level 0\n";
|
|
|
- options += "Sparse true forward\n";
|
|
|
- options += "Sparse true reverse\n";
|
|
|
- options += "Numeric max_cpu_time 0.5\n";
|
|
|
- // place to return solution
|
|
|
- CppAD::ipopt::solve_result<Dvector> solution;
|
|
|
-
|
|
|
- // solve the problem
|
|
|
- CppAD::ipopt::solve<Dvector, FG_eval_half_agv>(
|
|
|
- options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
|
|
|
- constraints_upperbound, fg_eval, solution);
|
|
|
-
|
|
|
- auto now=std::chrono::steady_clock::now();
|
|
|
- auto duration = std::chrono::duration_cast<std::chrono::microseconds>(now - start);
|
|
|
- double time = double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den;
|
|
|
-
|
|
|
- solution.status == CppAD::ipopt::solve_result<Dvector>::success; // invalid_number_detected
|
|
|
- if (solution.status != CppAD::ipopt::solve_result<Dvector>::success)
|
|
|
- {
|
|
|
- printf(" mpc failed statu : %d input: %.4f %.5f(%.5f) max_v:%f\n",solution.status,line_velocity,
|
|
|
- wmg,angular,max_velocity_);
|
|
|
- if (solution.status == CppAD::ipopt::solve_result<Dvector>::local_infeasibility)
|
|
|
- return no_solution;
|
|
|
- return failed;
|
|
|
- }
|
|
|
-
|
|
|
- // Cost
|
|
|
- auto cost = solution.obj_value;
|
|
|
-
|
|
|
- out.clear();
|
|
|
-
|
|
|
- double solve_velocity=solution.x[nv];
|
|
|
- double solve_angular=solution.x[ndlt];
|
|
|
-
|
|
|
- //纠正角速度/线速度,使其满足最小转弯半径
|
|
|
- double correct_angular=solve_angular;
|
|
|
- if( (solve_velocity*solve_velocity)/(solve_angular*solve_angular+1e-9) < (radius*radius)) {
|
|
|
- correct_angular = fabs(line_velocity) / radius;
|
|
|
- if (solve_angular < 0) correct_angular = -correct_angular;
|
|
|
- }
|
|
|
- ///-----
|
|
|
- printf("input:%.4f %.5f(%.5f) output:%.4f %.5f(%.5f) ref:%.3f max_v:%f time:%.3f\n",
|
|
|
- line_velocity,wmg,angular,solve_velocity,solve_angular,correct_angular,
|
|
|
- ref_velocity,max_velocity_,time);
|
|
|
-
|
|
|
- /*if(solve_velocity>=0 && solve_velocity<min_velocity_)
|
|
|
- solve_velocity=min_velocity_;
|
|
|
- if(solve_velocity<0 && solve_velocity>-min_velocity_)
|
|
|
- solve_velocity=-min_velocity_;*/
|
|
|
-
|
|
|
- out.push_back(solve_velocity);
|
|
|
- out.push_back(correct_angular);
|
|
|
-
|
|
|
-
|
|
|
- //计算预测轨迹
|
|
|
- optimize_trajectory.clear();
|
|
|
- for (int i = 0; i < N; ++i)
|
|
|
- {
|
|
|
- Pose2d pose(solution.x[nx + i], solution.x[ny + i], solution.x[nth + i]);
|
|
|
- optimize_trajectory.push_point(pose_agv+pose.rotate(pose_agv.theta()));
|
|
|
- }
|
|
|
- return success;
|
|
|
-}
|
|
|
+ select_traj = Trajectory(filte_poses);
|
|
|
+
|
|
|
+ //将选中点移动到小车坐标系
|
|
|
+ std::vector<Pose2d> transform_poses;
|
|
|
+ for (int i = 0; i < filte_poses.size(); i++) {
|
|
|
+ double x = filte_poses[i].x() - pose_agv.x();
|
|
|
+ double y = filte_poses[i].y() - pose_agv.y();
|
|
|
+ transform_poses.push_back(Pose2d(x, y, 0).rotate(-pose_agv.theta()));
|
|
|
+ }
|
|
|
+
|
|
|
+ Eigen::VectorXd coef = fit_path(transform_poses);
|
|
|
+
|
|
|
+ //优化
|
|
|
+ typedef CPPAD_TESTVECTOR(double) Dvector;
|
|
|
+
|
|
|
+ //根据当前点和目标点距离,计算目标速度
|
|
|
+
|
|
|
+ double ref_velocity = Pose2d::distance(pose_agv, target) / 2.5;
|
|
|
+ if (ref_velocity < 0.1)
|
|
|
+ ref_velocity = 0.1;
|
|
|
+ //目标点与起点的连线 朝向与启动朝向 > M_PI/2.0
|
|
|
+
|
|
|
+ Pose2d targetPoseInAGV = Pose2d::relativePose(target, pose_agv);
|
|
|
+ //std::cout<<"target:"<<target<<", agv:"<<pose_agv<<", relative:"<<targetPoseInAGV<<std::endl;
|
|
|
+ if (targetPoseInAGV.x() < 0)
|
|
|
+ ref_velocity = -ref_velocity;
|
|
|
+
|
|
|
+ double dt = mpc_param.dt;
|
|
|
+
|
|
|
+ //printf("min_v:%f max_v:%f\n",min_velocity_,max_velocity_);
|
|
|
+ double max_dlt = max_wmg;//5*M_PI/180.0;
|
|
|
+ double max_acc_line_velocity = mpc_param.acc_velocity;
|
|
|
+ double max_acc_dlt = mpc_param.acc_angular * M_PI / 180.0;
|
|
|
+
|
|
|
+ size_t n_vars = N * 5;
|
|
|
+
|
|
|
+ Dvector vars(n_vars);
|
|
|
+ for (int i = 0; i < n_vars; i++) {
|
|
|
+ vars[i] = 0.0;
|
|
|
+ }
|
|
|
+
|
|
|
+ Dvector vars_lowerbound(n_vars);
|
|
|
+ Dvector vars_upperbound(n_vars);
|
|
|
+ for (int i = 0; i < n_vars; i++) {
|
|
|
+ vars_lowerbound[i] = -1.0e19;
|
|
|
+ vars_upperbound[i] = 1.0e19;
|
|
|
+ }
|
|
|
+
|
|
|
+ //// limit v
|
|
|
+ for (int i = nv; i < nv + N; i++) {
|
|
|
+ vars_lowerbound[i] = -max_velocity_;
|
|
|
+ vars_upperbound[i] = max_velocity_;
|
|
|
+ }
|
|
|
+
|
|
|
+ ////limint dlt
|
|
|
+ for (int i = ndlt; i < ndlt + N; i++) {
|
|
|
+ vars_lowerbound[i] = -max_dlt;
|
|
|
+ vars_upperbound[i] = max_dlt;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Lower and upper limits for the constraints
|
|
|
+ size_t n_constraints = N * 5;
|
|
|
+ /*
|
|
|
+ * 障碍物是否进入 碰撞检测范围内
|
|
|
+ */
|
|
|
+ float distance = Pose2d::distance(obs_relative_pose_, Pose2d(0, 0, 0));
|
|
|
+ bool find_obs = false;
|
|
|
+ if (distance < 20) {
|
|
|
+ //printf(" mpc find obs ,w=%f,h=%f\n",obs_w_,obs_h_);
|
|
|
+ find_obs = true;
|
|
|
+ }
|
|
|
+ if (find_obs) n_constraints = N * (5 + 8);
|
|
|
|
|
|
-bool LoadedMPC::filte_Path(const Pose2d& point,Pose2d target,Trajectory trajectory,
|
|
|
- std::vector<Pose2d>& poses,int point_num)
|
|
|
-{
|
|
|
- double gradient=0;
|
|
|
- if(fabs((target-point).x())==0)
|
|
|
- gradient=200.0;
|
|
|
- else
|
|
|
- gradient= (target-point).y()/(target-point).x();
|
|
|
-
|
|
|
- double theta=gradient2theta(gradient,target.x()-point.x()>=0);
|
|
|
-
|
|
|
- if(trajectory.size() < 2)
|
|
|
- return false;
|
|
|
-
|
|
|
- poses.clear();
|
|
|
- for (int i = 0; i < trajectory.size(); i++)
|
|
|
- {
|
|
|
- // 平移加反向旋转到小车坐标系
|
|
|
- Pose2d offset=trajectory[i]-point;
|
|
|
- double x = offset.x();
|
|
|
- double y = offset.y();
|
|
|
- double trans_x = x * cos(-theta) - y * sin(-theta);
|
|
|
- double trans_y = x * sin(-theta) + y * cos(-theta);
|
|
|
- if (trans_x>=0 && poses.size() < point_num)
|
|
|
+ Dvector constraints_lowerbound(n_constraints);
|
|
|
+ Dvector constraints_upperbound(n_constraints);
|
|
|
+ for (int i = 0; i < n_constraints; i++) {
|
|
|
+ constraints_lowerbound[i] = 0;
|
|
|
+ constraints_upperbound[i] = 0;
|
|
|
+ }
|
|
|
+ //// acc v
|
|
|
+ for (int i = nv; i < nv + N; i++) {
|
|
|
+ constraints_lowerbound[i] = -max_acc_line_velocity;
|
|
|
+ constraints_upperbound[i] = max_acc_line_velocity;
|
|
|
+ }
|
|
|
+ //// acc ndlt
|
|
|
+ for (int i = ndlt; i < ndlt + N; i++) {
|
|
|
+ constraints_lowerbound[i] = -max_acc_dlt;
|
|
|
+ constraints_upperbound[i] = max_acc_dlt;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 与障碍物保持距离的约束
|
|
|
+ if (find_obs) {
|
|
|
+ for (int i = nobs; i < nobs + 8 * N; ++i) {
|
|
|
+ constraints_lowerbound[i] = 1.0;
|
|
|
+ constraints_upperbound[i] = 1e19;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //限制最小转弯半径,
|
|
|
+ /*for(int i=nwmg;i<nwmg+N;++i)
|
|
|
{
|
|
|
- // 旋转到原坐标系
|
|
|
- float nx=trans_x * cos(theta) - trans_y * sin(theta);
|
|
|
- float ny=trans_x*sin(theta)+trans_y*cos(theta);
|
|
|
- Pose2d pose(nx+point.x(),ny+point.y(),trajectory[i].theta());
|
|
|
- poses.push_back(pose);
|
|
|
+ constraints_lowerbound[i] = 0;
|
|
|
+ constraints_upperbound[i] = 1.0/(radius*radius);
|
|
|
+ }*/
|
|
|
+
|
|
|
+ if (line_velocity > max_velocity_) {
|
|
|
+ line_velocity = max_velocity_;
|
|
|
+ }
|
|
|
+ if (line_velocity < -max_velocity_) {
|
|
|
+ line_velocity = -max_velocity_;
|
|
|
+ }
|
|
|
+ if (angular > max_dlt) {
|
|
|
+ angular = max_dlt;
|
|
|
+ }
|
|
|
+ if (angular < -max_dlt) {
|
|
|
+ angular = -max_dlt;
|
|
|
+ }
|
|
|
+
|
|
|
+ Eigen::VectorXd statu_velocity(2);
|
|
|
+ if (find_obs) {
|
|
|
+ statu_velocity = Eigen::VectorXd(2 + 16);
|
|
|
+
|
|
|
+ std::vector<Pose2d> vertexs = Pose2d::generate_rectangle_vertexs(obs_relative_pose_, obs_w_ * 2, obs_h_ * 2);
|
|
|
+ for (int i = 0; i < vertexs.size(); ++i) {
|
|
|
+ //std::cout<<"vetex:"<<vertexs[i]<<std::endl;
|
|
|
+ statu_velocity[2 + i * 2] = vertexs[i].x();
|
|
|
+ statu_velocity[2 + i * 2 + 1] = vertexs[i].y();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ statu_velocity[0] = line_velocity;
|
|
|
+ statu_velocity[1] = angular;
|
|
|
+
|
|
|
+ Eigen::VectorXd condition(6);
|
|
|
+ condition << dt, ref_velocity, obs_w_, obs_h_, targetPoseInAGV.x(), targetPoseInAGV.y();
|
|
|
+ FG_eval_half_agv fg_eval(coef, statu_velocity, condition);
|
|
|
+
|
|
|
+ // options for IPOPT solver
|
|
|
+ std::string options;
|
|
|
+ // Uncomment this if you'd like more print information
|
|
|
+ options += "Integer print_level 0\n";
|
|
|
+ options += "Sparse true forward\n";
|
|
|
+ options += "Sparse true reverse\n";
|
|
|
+ options += "Numeric max_cpu_time 0.5\n";
|
|
|
+ // place to return solution
|
|
|
+ CppAD::ipopt::solve_result<Dvector> solution;
|
|
|
+
|
|
|
+ // solve the problem
|
|
|
+ CppAD::ipopt::solve<Dvector, FG_eval_half_agv>(
|
|
|
+ options, vars, vars_lowerbound, vars_upperbound, constraints_lowerbound,
|
|
|
+ constraints_upperbound, fg_eval, solution);
|
|
|
+
|
|
|
+ auto now = std::chrono::steady_clock::now();
|
|
|
+ auto duration = std::chrono::duration_cast<std::chrono::microseconds>(now - start);
|
|
|
+ double time =
|
|
|
+ double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den;
|
|
|
+
|
|
|
+ solution.status == CppAD::ipopt::solve_result<Dvector>::success; // invalid_number_detected
|
|
|
+ if (solution.status != CppAD::ipopt::solve_result<Dvector>::success) {
|
|
|
+ printf(" mpc failed statu : %d input: %.4f %.5f(%.5f) max_v:%f\n", solution.status, line_velocity,
|
|
|
+ wmg, angular, max_velocity_);
|
|
|
+ if (solution.status == CppAD::ipopt::solve_result<Dvector>::local_infeasibility)
|
|
|
+ return no_solution;
|
|
|
+ return failed;
|
|
|
+ }
|
|
|
+
|
|
|
+ // Cost
|
|
|
+ auto cost = solution.obj_value;
|
|
|
+
|
|
|
+ out.clear();
|
|
|
+
|
|
|
+ double solve_velocity = solution.x[nv];
|
|
|
+ double solve_angular = solution.x[ndlt];
|
|
|
+
|
|
|
+ //纠正角速度/线速度,使其满足最小转弯半径
|
|
|
+ double correct_angular = solve_angular;
|
|
|
+ if ((solve_velocity * solve_velocity) / (solve_angular * solve_angular + 1e-9) < (radius * radius)) {
|
|
|
+ correct_angular = fabs(line_velocity) / radius;
|
|
|
+ if (solve_angular < 0) correct_angular = -correct_angular;
|
|
|
}
|
|
|
- }
|
|
|
- int size=poses.size();
|
|
|
- if(size<point_num)
|
|
|
- {
|
|
|
- //一个点都没有,则以当前点开始,反向取点
|
|
|
- float dl=-0.1;
|
|
|
- Pose2d last=point;
|
|
|
- if(size>=1){
|
|
|
- //从最后点到最后一点均匀选取
|
|
|
- last=poses[size-1]; //
|
|
|
- dl=0.1;
|
|
|
+ ///-----
|
|
|
+ printf("input:%.4f %.5f(%.5f) output:%.4f %.5f(%.5f) ref:%.3f max_v:%f time:%.3f\n",
|
|
|
+ line_velocity, wmg, angular, solve_velocity, solve_angular, correct_angular,
|
|
|
+ ref_velocity, max_velocity_, time);
|
|
|
+
|
|
|
+ /*if(solve_velocity>=0 && solve_velocity<min_velocity_)
|
|
|
+ solve_velocity=min_velocity_;
|
|
|
+ if(solve_velocity<0 && solve_velocity>-min_velocity_)
|
|
|
+ solve_velocity=-min_velocity_;*/
|
|
|
+
|
|
|
+ out.push_back(solve_velocity);
|
|
|
+ out.push_back(correct_angular);
|
|
|
+
|
|
|
+
|
|
|
+ //计算预测轨迹
|
|
|
+ optimize_trajectory.clear();
|
|
|
+ for (int i = 0; i < N; ++i) {
|
|
|
+ Pose2d pose(solution.x[nx + i], solution.x[ny + i], solution.x[nth + i]);
|
|
|
+ optimize_trajectory.push_point(pose_agv + pose.rotate(pose_agv.theta()));
|
|
|
}
|
|
|
- float dx=cos(last.theta())*dl;
|
|
|
- float dy=sin(last.theta())*dl;
|
|
|
- for(int i=1;i<point_num-size+1;++i)
|
|
|
- poses.push_back(Pose2d(last.x()+dx*i,last.y()+dy*i,last.theta()));
|
|
|
- }
|
|
|
- return true;
|
|
|
+ return success;
|
|
|
}
|
|
|
|
|
|
-Eigen::VectorXd LoadedMPC::fit_path(const std::vector<Pose2d>& trajectory)
|
|
|
-{
|
|
|
- int order=3;
|
|
|
- assert(order >= 1 && order <= trajectory.size() - 1);
|
|
|
- Eigen::MatrixXd A(trajectory.size(), order + 1);
|
|
|
- Eigen::VectorXd yvals(trajectory.size());
|
|
|
- for (int i = 0; i < trajectory.size(); i++) {
|
|
|
- A(i, 0) = 1.0;
|
|
|
- yvals[i]=trajectory[i].y();
|
|
|
- }
|
|
|
-
|
|
|
- for (int j = 0; j < trajectory.size(); j++) {
|
|
|
- for (int i = 0; i < order; i++) {
|
|
|
- A(j, i + 1) = A(j, i) * trajectory[j].x();
|
|
|
+bool LoadedMPC::filte_Path(const Pose2d &point, Pose2d target, Trajectory trajectory,
|
|
|
+ std::vector<Pose2d> &poses, int point_num) {
|
|
|
+ double gradient = 0;
|
|
|
+ if (fabs((target - point).x()) == 0)
|
|
|
+ gradient = 200.0;
|
|
|
+ else
|
|
|
+ gradient = (target - point).y() / (target - point).x();
|
|
|
+
|
|
|
+ double theta = gradient2theta(gradient, target.x() - point.x() >= 0);
|
|
|
+
|
|
|
+ if (trajectory.size() < 2)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ poses.clear();
|
|
|
+ for (int i = 0; i < trajectory.size(); i++) {
|
|
|
+ // 平移加反向旋转到小车坐标系
|
|
|
+ Pose2d offset = trajectory[i] - point;
|
|
|
+ double x = offset.x();
|
|
|
+ double y = offset.y();
|
|
|
+ double trans_x = x * cos(-theta) - y * sin(-theta);
|
|
|
+ double trans_y = x * sin(-theta) + y * cos(-theta);
|
|
|
+ if (trans_x >= 0 && poses.size() < point_num) {
|
|
|
+ // 旋转到原坐标系
|
|
|
+ float nx = trans_x * cos(theta) - trans_y * sin(theta);
|
|
|
+ float ny = trans_x * sin(theta) + trans_y * cos(theta);
|
|
|
+ Pose2d pose(nx + point.x(), ny + point.y(), trajectory[i].theta());
|
|
|
+ poses.push_back(pose);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ int size = poses.size();
|
|
|
+ if (size < point_num) {
|
|
|
+ //一个点都没有,则以当前点开始,反向取点
|
|
|
+ float dl = -0.1;
|
|
|
+ Pose2d last = point;
|
|
|
+ if (size >= 1) {
|
|
|
+ //从最后点到最后一点均匀选取
|
|
|
+ last = poses[size - 1]; //
|
|
|
+ dl = 0.1;
|
|
|
+ }
|
|
|
+ float dx = cos(last.theta()) * dl;
|
|
|
+ float dy = sin(last.theta()) * dl;
|
|
|
+ for (int i = 1; i < point_num - size + 1; ++i)
|
|
|
+ poses.push_back(Pose2d(last.x() + dx * i, last.y() + dy * i, last.theta()));
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+Eigen::VectorXd LoadedMPC::fit_path(const std::vector<Pose2d> &trajectory) {
|
|
|
+ int order = 3;
|
|
|
+ assert(order >= 1 && order <= trajectory.size() - 1);
|
|
|
+ Eigen::MatrixXd A(trajectory.size(), order + 1);
|
|
|
+ Eigen::VectorXd yvals(trajectory.size());
|
|
|
+ for (int i = 0; i < trajectory.size(); i++) {
|
|
|
+ A(i, 0) = 1.0;
|
|
|
+ yvals[i] = trajectory[i].y();
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int j = 0; j < trajectory.size(); j++) {
|
|
|
+ for (int i = 0; i < order; i++) {
|
|
|
+ A(j, i + 1) = A(j, i) * trajectory[j].x();
|
|
|
+ }
|
|
|
}
|
|
|
- }
|
|
|
|
|
|
|
|
|
- auto Q = A.householderQr();
|
|
|
- auto result = Q.solve(yvals);
|
|
|
- return result;
|
|
|
+ auto Q = A.householderQr();
|
|
|
+ auto result = Q.solve(yvals);
|
|
|
+ return result;
|
|
|
}
|