point_sift_segmentation.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759
  1. #include "point_sift_segmentation.h"
  2. #include <glog/logging.h>
  3. #include <fstream>
  4. #include <algorithm>
  5. #include <pcl/filters//voxel_grid.h>
  6. #include <pcl/filters/passthrough.h>
  7. #include <time.h>
  8. #include <sys/time.h>
  9. #include <chrono>
  10. #include <thread>
  11. void save_rgb_cloud_txt(std::string txt, pcl::PointCloud<pcl::PointXYZRGB>& cloud)
  12. {
  13. std::ofstream os;
  14. os.open(txt, std::ios::out);
  15. for (int i = 0; i < cloud.points.size(); i++)
  16. {
  17. pcl::PointXYZRGB point = cloud.points[i];
  18. char buf[255];
  19. memset(buf, 0, 255);
  20. sprintf(buf, "%f %f %f %d %d %d\n", point.x, point.y, point.z, point.r, point.g, point.b);
  21. os.write(buf, strlen(buf));
  22. }
  23. os.close();
  24. }
  25. void save_rgb_cloud_txt(std::string txt, std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>& cloud_vector)
  26. {
  27. std::ofstream os;
  28. os.open(txt, std::ios::out);
  29. for (int j = 0; j < cloud_vector.size(); ++j)
  30. {
  31. for (int i = 0; i < cloud_vector[j]->points.size(); i++)
  32. {
  33. pcl::PointXYZRGB point = cloud_vector[j]->points[i];
  34. char buf[255];
  35. memset(buf, 0, 255);
  36. sprintf(buf, "%f %f %f %d %d %d\n", point.x, point.y, point.z, point.r, point.g, point.b);
  37. os.write(buf, strlen(buf));
  38. }
  39. }
  40. os.close();
  41. }
  42. Point_sift_segmentation::Point_sift_segmentation(int point_size, int cls, float freq, pcl::PointXYZ minp, pcl::PointXYZ maxp)
  43. :PointSifter(point_size, cls)
  44. {
  45. m_point_num = point_size;
  46. m_cls_num = cls;
  47. m_freq = freq;
  48. m_minp = minp;
  49. m_maxp = maxp;
  50. }
  51. Point_sift_segmentation::Point_sift_segmentation(int point_size,int cls,float freq, Cloud_box cloud_box)
  52. :PointSifter(point_size, cls)
  53. {
  54. m_point_num = point_size;
  55. m_cls_num = cls;
  56. m_freq = freq;
  57. m_cloud_box_limit = cloud_box;
  58. }
  59. Point_sift_segmentation::~Point_sift_segmentation()
  60. {
  61. }
  62. Error_manager Point_sift_segmentation::init(std::string graph, std::string cpkt)
  63. {
  64. if (!Load(graph, cpkt))
  65. {
  66. std::string error_string="pointSIFT Init ERROR:";
  67. error_string+=LastError();
  68. return Error_manager(LOCATER_SIFT_INIT_FAILED,MINOR_ERROR,error_string);
  69. }
  70. //创建空数据,第一次初始化后空跑
  71. float* cloud_data = (float*)malloc(m_point_num * 3 * sizeof(float));
  72. float* output = (float*)malloc(m_point_num * m_cls_num * sizeof(float));
  73. auto start = std::chrono::system_clock::now();
  74. if (false == Predict(cloud_data, output))
  75. {
  76. free(cloud_data);
  77. free(output);
  78. std::string error_string="pointSIFT int first predict ERROR:";
  79. error_string+=LastError();
  80. return Error_manager(LOCATER_SIFT_PREDICT_FAILED,MINOR_ERROR,error_string);
  81. }
  82. else
  83. {
  84. free(cloud_data);
  85. free(output);
  86. }
  87. auto end = std::chrono::system_clock::now();
  88. auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
  89. std::cout << "花费了"
  90. << double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den << "秒" << std::endl;
  91. return SUCCESS;
  92. }
  93. //分割函数,输入点云,输出各类的点云,并保存中间文件方便查看识别结果.
  94. //cloud:输入点云
  95. //clouds:输出分类好的多个点云(附带颜色,红色为杂物,绿色为车,白色为地面)(此时里面没有内存)
  96. Error_manager Point_sift_segmentation::segmentation(int lidar_id, pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_in,
  97. std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>& cloud_vector,
  98. bool save_flag, std::string save_dir)
  99. {
  100. if(p_cloud_in.get()==NULL)
  101. {
  102. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_UNINIT,MINOR_ERROR,"sift input cloud uninit");
  103. }
  104. if(p_cloud_in->size()<=0)
  105. {
  106. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_EMPTY,MINOR_ERROR,"locate_sift input cloud empty");
  107. }
  108. Error_manager t_error;
  109. std::cout << "p_cloud_in = "<<p_cloud_in->size() << std::endl;
  110. //第一步
  111. // 使用体素网格, 抽稀点云, //将点云空间分为小方格,每个小方格只保留一个点.
  112. t_error = filter_cloud_with_voxel_grid(p_cloud_in);
  113. if ( t_error != Error_code::SUCCESS )
  114. {
  115. return t_error;
  116. }
  117. std::cout << "p_cloud_in = "<<p_cloud_in->size() << std::endl;
  118. //第二步
  119. // 使用box限定点云范围,只保留box范围内部的点, 剔除外部的点云
  120. t_error = filter_cloud_with_box(p_cloud_in);
  121. if ( t_error != Error_code::SUCCESS )
  122. {
  123. return t_error;
  124. }
  125. std::cout << "p_cloud_in = "<<p_cloud_in->size() << std::endl;
  126. //第三步 /
  127. // /通过输入点云,更新区域范围, 范围不一定是box的边界,可能比box要小.
  128. t_error = update_region(p_cloud_in);
  129. if ( t_error != Error_code::SUCCESS )
  130. {
  131. return t_error;
  132. }
  133. std::cout << "p_cloud_in = "<<p_cloud_in->size() << std::endl;
  134. //第四步
  135. // 抽稀点云, //自己写的算法, 重新生成新的点云.
  136. t_error = filter_cloud_with_my_grid(p_cloud_in);
  137. if ( t_error != Error_code::SUCCESS )
  138. {
  139. return t_error;
  140. }
  141. std::cout << "p_cloud_in = "<<p_cloud_in->size() << std::endl;
  142. //第五步
  143. pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_select(new pcl::PointCloud<pcl::PointXYZ>);
  144. //从点云中选出固定数量的随机点, 默认8192个点
  145. t_error = filter_cloud_with_select(p_cloud_in, p_cloud_select);
  146. if ( t_error != Error_code::SUCCESS )
  147. {
  148. return t_error;
  149. }
  150. std::cout << "p_cloud_select = "<<p_cloud_select->size() << std::endl;
  151. /*
  152. //第六步
  153. //把pcl点云转化为float, 因为TensorFlow算法只能识别float
  154. //提前分配内存, 后续记得回收....
  155. float* p_data_point = (float*)malloc(m_point_num * 3 * sizeof(float)); //8192*3 float, 8192个三维点
  156. float* p_data_type = (float*)malloc(m_point_num*m_cls_num*sizeof(float)); //8192*2 float, 8192个类别百分比(车轮和车身2类)
  157. memset(p_data_point, 0, m_point_num * 3 * sizeof(float));
  158. memset(p_data_type, 0, m_point_num*m_cls_num * sizeof(float));
  159. //将点云数据转换到float*
  160. t_error = translate_cloud_to_float(p_cloud_select, p_data_point);
  161. if ( t_error != Error_code::SUCCESS )
  162. {
  163. free(p_data_point);
  164. free(p_data_type);
  165. return t_error;
  166. }
  167. //第七步
  168. //tensonflow预测点云, 计算出每个三维点的类别百分比,
  169. auto start = system_clock::now();
  170. if (!Predict(p_data_point, p_data_type))
  171. {
  172. free(p_data_point);
  173. free(p_data_type);
  174. return Error_manager(LOCATER_SIFT_PREDICT_FAILED,MINOR_ERROR,"pointSIFT predict ERROR");
  175. }
  176. auto end = system_clock::now();
  177. auto duration = duration_cast<microseconds>(end - start);
  178. cout << "花费了"
  179. << double(duration.count()) * microseconds::period::num / microseconds::period::den << "秒" << endl;
  180. cout << double(duration.count()) << " "
  181. << microseconds::period::num << " " << microseconds::period::den << "秒" << endl;
  182. */
  183. //重写6和7步, 将TensorFlow算法放在服务器上, 使用socket通信去发送点云并获取结果
  184. //第六步
  185. //把pcl点云转化为float, 因为TensorFlow算法只能识别float
  186. //提前分配内存, 后续记得回收....
  187. float* p_data_point = (float*)malloc(m_point_num * 3 * sizeof(float)); //8192*3 float, 8192个三维点
  188. int* p_data_type = (int*)malloc(m_point_num*sizeof(int)); //8192*2 float, 8192个类别百分比(车轮和车身2类)
  189. memset(p_data_point, 0, m_point_num * 3 * sizeof(float));
  190. memset(p_data_type, 0, m_point_num * sizeof(int));
  191. //将点云数据转换到float*
  192. t_error = translate_cloud_to_float(p_cloud_select, p_data_point);
  193. if ( t_error != Error_code::SUCCESS )
  194. {
  195. free(p_data_point);
  196. free(p_data_type);
  197. return t_error;
  198. }
  199. //第七步
  200. //tensonflow预测点云, 计算出每个三维点的类别百分比,
  201. auto start = std::chrono::system_clock::now();
  202. //预测, 发送socket通信, 在服务器上进行点云算法
  203. t_error = m_predict_with_network.predict_for_send(lidar_id, p_data_point);
  204. if ( t_error != Error_code::SUCCESS )
  205. {
  206. free(p_data_point);
  207. free(p_data_type);
  208. return t_error;
  209. }
  210. //循环接受, 超时等待5000ms, (后续可以在这里加上强制取消)
  211. while (std::chrono::system_clock::now() - start < std::chrono::milliseconds(5000))
  212. {
  213. t_error = m_predict_with_network.predict_for_receive(lidar_id, p_data_type);
  214. if ( t_error == Error_code::SUCCESS )
  215. {
  216. //算法成功, 直接退出循环即可
  217. break;
  218. }
  219. else if ( t_error == Error_code::NODATA )
  220. {
  221. //继续循环, 延迟1us
  222. std::this_thread::yield();
  223. std::this_thread::sleep_for(std::chrono::microseconds(1));
  224. continue;
  225. }
  226. else
  227. {
  228. free(p_data_point);
  229. free(p_data_type);
  230. return t_error;
  231. }
  232. }
  233. if ( std::chrono::system_clock::now() - start >= std::chrono::milliseconds(5000) )
  234. {
  235. free(p_data_point);
  236. free(p_data_type);
  237. return Error_manager(Error_code::LOCATER_SIFT_PREDICT_TIMEOUT, Error_level::MINOR_ERROR,
  238. " m_predict_with_network.predict_for_receive error ");
  239. }
  240. auto end = std::chrono::system_clock::now();
  241. auto duration = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
  242. std::cout << "花费了"
  243. << double(duration.count()) * std::chrono::microseconds::period::num / std::chrono::microseconds::period::den << "秒" << std::endl;
  244. std::cout << double(duration.count()) << " "
  245. << std::chrono::microseconds::period::num << " " << std::chrono::microseconds::period::den << "秒" << std::endl;
  246. //第八步
  247. //恢复点云,并填充到cloud_vector
  248. t_error = recovery_float_to_cloud(p_data_type, p_data_point, cloud_vector);
  249. if ( t_error != Error_code::SUCCESS )
  250. {
  251. free(p_data_point);
  252. free(p_data_type);
  253. return t_error;
  254. }
  255. //第九步
  256. //保存点云数据
  257. if ( save_flag )
  258. {
  259. t_error = save_cloud(cloud_vector,save_dir);
  260. if ( t_error != Error_code::SUCCESS )
  261. {
  262. free(p_data_point);
  263. free(p_data_type);
  264. return t_error;
  265. }
  266. }
  267. //第十步
  268. free(p_data_point);
  269. free(p_data_type);
  270. return Error_code::SUCCESS;
  271. }
  272. Predict_with_network& Point_sift_segmentation::get_predict_with_network()
  273. {
  274. return m_predict_with_network;
  275. }
  276. //使用体素网格, 抽稀点云, //将点云空间分为小方格,每个小方格只保留一个点.
  277. Error_manager Point_sift_segmentation::filter_cloud_with_voxel_grid(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud)
  278. {
  279. if(p_cloud.get()==0)
  280. {
  281. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_UNINIT,MINOR_ERROR,"sift input cloud uninit");
  282. }
  283. if(p_cloud->size()<=0)
  284. {
  285. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_EMPTY,MINOR_ERROR,"locate_sift input cloud empty");
  286. }
  287. //体素网格 下采样
  288. pcl::VoxelGrid<pcl::PointXYZ> vgfilter;
  289. vgfilter.setInputCloud(p_cloud);
  290. vgfilter.setLeafSize(0.02f, 0.02f, 0.02f);
  291. vgfilter.filter(*p_cloud);
  292. return Error_code::SUCCESS;
  293. }
  294. //使用box限定点云范围,只保留box范围内部的点, 剔除外部的点云
  295. Error_manager Point_sift_segmentation::filter_cloud_with_box(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud)
  296. {
  297. if(p_cloud.get()==0)
  298. {
  299. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_UNINIT,MINOR_ERROR,"sift input cloud uninit");
  300. }
  301. if(p_cloud->size()<=0)
  302. {
  303. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_EMPTY,MINOR_ERROR,"locate_sift input cloud empty");
  304. }
  305. //限制 x y
  306. pcl::PassThrough<pcl::PointXYZ> passX;
  307. pcl::PassThrough<pcl::PointXYZ> passY;
  308. pcl::PassThrough<pcl::PointXYZ> passZ;
  309. passX.setInputCloud(p_cloud);
  310. passX.setFilterFieldName("x");
  311. passX.setFilterLimits(m_cloud_box_limit.x_min, m_cloud_box_limit.x_max);
  312. passX.filter(*p_cloud);
  313. passY.setInputCloud(p_cloud);
  314. passY.setFilterFieldName("y");
  315. passY.setFilterLimits(m_cloud_box_limit.y_min, m_cloud_box_limit.y_max);
  316. passY.filter(*p_cloud);
  317. passZ.setInputCloud(p_cloud);
  318. passZ.setFilterFieldName("z");
  319. passZ.setFilterLimits(m_cloud_box_limit.z_min, m_cloud_box_limit.z_max);
  320. passZ.filter(*p_cloud);
  321. return Error_code::SUCCESS;
  322. }
  323. //通过输入点云,更新边界区域范围
  324. Error_manager Point_sift_segmentation::update_region(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud)
  325. {
  326. pcl::PointXYZ min_point,max_point;
  327. pcl::getMinMax3D(*p_cloud,min_point,max_point);
  328. if(max_point.x<=min_point.x || max_point.y<=min_point.y)
  329. {
  330. return Error_manager(LOCATER_SIFT_INPUT_BOX_PARAMETER_FAILED,MINOR_ERROR,
  331. "Point sift update_region errror :m_maxp.x<=m_minp.x || m_maxp.y<=m_minp.y ");
  332. }
  333. m_minp = min_point;
  334. m_maxp = max_point;
  335. return Error_code::SUCCESS;
  336. }
  337. //抽稀点云, //自己写的算法, 重新生成新的点云.
  338. Error_manager Point_sift_segmentation::filter_cloud_with_my_grid(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud)
  339. {
  340. if(p_cloud.get()==NULL)
  341. {
  342. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_UNINIT,MINOR_ERROR,"sift input cloud uninit");
  343. }
  344. if(p_cloud->size()<=0)
  345. {
  346. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_EMPTY,MINOR_ERROR,"locate_sift input cloud empty");
  347. }
  348. Error_manager t_error;
  349. //可以按照输入点云的数量, 然后动态修改 m_freq , 让其在抽稀之后,点云数量接近8192
  350. //以后在写.
  351. //按照m_freq的分辨率, 将点云拆分为很多网格
  352. //网格大小 m_freq 的3次方, 网格总数 grid_number
  353. int t_grid_length = int((m_maxp.x - m_minp.x) / m_freq) + 1;
  354. int t_grid_width = int((m_maxp.y - m_minp.y) / m_freq) + 1;
  355. int t_grid_height = int((m_maxp.z - m_minp.z) / m_freq) + 1;
  356. int t_grid_number = t_grid_length * t_grid_width * t_grid_height;
  357. // std::cout << " t_grid_length = "<<t_grid_length << " t_grid_width = "<<t_grid_width<< " t_grid_height = "<<t_grid_height<< std::endl;
  358. // std::cout << "---------------------------"<< std::endl;
  359. //创建网格->三维点的map, 每个网格里面只保留一个点,
  360. std::map<int, pcl::PointXYZ> grid_point_map;
  361. //遍历输入点云, 将每个点的索引编号写入对应的网格.
  362. for (int i = 0; i < p_cloud->size(); ++i)
  363. {
  364. //找到对应的网格.
  365. pcl::PointXYZ point = p_cloud->points[i];
  366. int id_x = (point.x - m_minp.x) / m_freq;
  367. int id_y = (point.y - m_minp.y) / m_freq;
  368. int id_z = (point.z - m_minp.z) / m_freq;
  369. // std::cout << "------------point:"<< point << std::endl;
  370. // std::cout << "------------m_minp:"<< m_minp << std::endl;
  371. // std::cout << "------------m_freq:"<< m_freq << std::endl;
  372. // std::cout << " id_x = "<<id_x << " id_y = "<<id_y<< " id_y = "<<id_y<< std::endl;
  373. if (id_x < 0 || id_x >= t_grid_length || id_y < 0 || id_y >= t_grid_width || id_z < 0 || id_z >= t_grid_height)
  374. {
  375. //无效点.不要.
  376. continue;
  377. }
  378. grid_point_map[id_x + id_y*t_grid_length + id_z*t_grid_length*t_grid_width] = point;
  379. //注:如果有多个点属于同一个网格, 那个后者就会覆盖前者, 最终保留一个点.
  380. }
  381. //检查map
  382. if ( grid_point_map.size() >0 )
  383. {
  384. //清空点云, 然后将map里面的点 重新加入p_cloud
  385. p_cloud->clear();
  386. for ( auto iter = grid_point_map.begin(); iter != grid_point_map.end(); iter++ )
  387. {
  388. p_cloud->push_back(iter->second);
  389. }
  390. }
  391. else
  392. {
  393. return Error_manager(Error_code::LOCATER_SIFT_GRID_ERROR, Error_level::MINOR_ERROR,
  394. " filter_cloud_with_my_grid error ");
  395. }
  396. /*
  397. //创建网格的数据, 内存大小为t_grid_number, 储存内容为是否存在点云的标记位.
  398. bool* tp_grid = (bool*)malloc(t_grid_number*sizeof(bool));
  399. memset(tp_grid, 0, t_grid_number*sizeof(bool));
  400. //遍历输入点云, 将每个点映射到输入网格, 每个网格最多保留一个点,多余的删除.
  401. for(pcl::PointCloud<pcl::PointXYZ>::iterator iter = p_cloud->begin(); iter !=p_cloud->end(); )
  402. {
  403. //找到对应的网格.
  404. int id_x = (iter->x - m_minp.x) / m_freq;
  405. int id_y = (iter->y - m_minp.y) / m_freq;
  406. int id_z = (iter->z - m_minp.z) / m_freq;
  407. if (id_x < 0 || id_x >= t_grid_length || id_y < 0 || id_y >= t_grid_width || id_z < 0 || id_z >= t_grid_height)
  408. {
  409. //无效点, 直接删除
  410. iter = p_cloud->erase(iter);//删除当前节点,自动指向下一个节点
  411. }
  412. else if(*(tp_grid + id_x + id_y*t_grid_length + id_z*t_grid_length*t_grid_width) == true)
  413. {
  414. //标记位为true,就表示这个网格已经有点了, 那么直接删除后者,保留前者
  415. iter = p_cloud->erase(iter);//删除当前节点,自动指向下一个节点
  416. }
  417. else
  418. {
  419. *(tp_grid + id_x + id_y*t_grid_length + id_z*t_grid_length*t_grid_width) = true;
  420. iter++;
  421. }
  422. }
  423. free(tp_grid);
  424. */
  425. return Error_code::SUCCESS;
  426. }
  427. //从点云中选出固定数量的随机点, 默认8192个点
  428. Error_manager Point_sift_segmentation::filter_cloud_with_select(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_in, pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_out)
  429. {
  430. if(p_cloud_in.get()==NULL || p_cloud_out.get()==NULL)
  431. {
  432. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_UNINIT,MINOR_ERROR,"sift input cloud uninit");
  433. }
  434. if(p_cloud_in->size()<=0)
  435. {
  436. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_EMPTY,MINOR_ERROR,"locate_sift input cloud empty");
  437. }
  438. Error_manager t_error;
  439. //从输入点云 p_cloud_in 里面选出 m_point_num 个点, 然后加入 p_cloud_out
  440. //输入个数大于8192
  441. if (p_cloud_in->size() > m_point_num)
  442. {
  443. //将点云随机打乱
  444. std::random_shuffle(p_cloud_in->points.begin(), p_cloud_in->points.end());
  445. //选出输入点云前面8192个点.
  446. p_cloud_out->points.assign(p_cloud_in->points.begin(), p_cloud_in->points.begin() + m_point_num);
  447. }
  448. //输入个数小鱼8192
  449. else if (p_cloud_in->size() < m_point_num)
  450. {
  451. int add = m_point_num - p_cloud_in->size();
  452. //注意了, 输入点云不能少于4096, 否则点云分布太少, 会严重影响到TensorFlow的图像识别.
  453. if (add > p_cloud_in->size())
  454. {
  455. return Error_manager(Error_code::LOCATER_SIFT_CLOUD_VERY_LITTLE, Error_level::MINOR_ERROR,
  456. " filter_cloud_with_select p_cloud_in->size() very little ");
  457. }
  458. //将点云随机打乱
  459. std::random_shuffle(p_cloud_in->points.begin(), p_cloud_in->points.end());
  460. //选出输入点云8192个点, 不够的在加一次,
  461. p_cloud_out->points.assign(p_cloud_in->points.begin(), p_cloud_in->points.begin() + add);
  462. p_cloud_out->points.insert(p_cloud_out->points.begin(), p_cloud_in->points.begin(), p_cloud_in->points.end());
  463. }
  464. //输入个数等于8192
  465. else
  466. {
  467. //此时就不需要打乱了, 直接全部复制.
  468. p_cloud_out->points.assign(p_cloud_in->points.begin(), p_cloud_in->points.end());
  469. }
  470. if (p_cloud_out->points.size() != m_point_num)
  471. {
  472. return Error_manager(Error_code::LOCATER_SIFT_SELECT_ERROR, Error_level::MINOR_ERROR,
  473. " Point_sift_segmentation::filter_cloud_with_select error ");
  474. }
  475. return Error_code::SUCCESS;
  476. }
  477. //将点云数据转换到float*
  478. Error_manager Point_sift_segmentation::translate_cloud_to_float(pcl::PointCloud<pcl::PointXYZ>::Ptr p_cloud_in, float* p_data_out)
  479. {
  480. if(p_cloud_in.get()==NULL)
  481. {
  482. return Error_manager(LOCATER_SIFT_INPUT_CLOUD_UNINIT,MINOR_ERROR,"sift input cloud uninit");
  483. }
  484. if(p_cloud_in->size() != m_point_num)
  485. {
  486. return Error_manager(Error_code::PARAMETER_ERROR, Error_level::MINOR_ERROR,
  487. " Point_sift_segmentation::translate_cloud_to_float p_cloud_in->size() error ");
  488. }
  489. if ( p_data_out == NULL )
  490. {
  491. return Error_manager(Error_code::POINTER_IS_NULL, Error_level::MINOR_ERROR,
  492. " translate_cloud_to_float p_data_out POINTER_IS_NULL ");
  493. }
  494. for (int i = 0; i < m_point_num; ++i)
  495. {
  496. pcl::PointXYZ point = p_cloud_in->points[i];
  497. *(p_data_out + i * 3) = point.x;
  498. *(p_data_out + i * 3+1) = point.y;
  499. *(p_data_out + i * 3+2) = point.z ;
  500. //注:三维点云的数据 不用做缩放和平移,
  501. // 这个在雷达扫描时就进行了标定和转化, 雷达传输过来的坐标就已经是公共坐标系了, (单位米)
  502. }
  503. return Error_code::SUCCESS;
  504. }
  505. //恢复点云, 将float*转换成点云
  506. //p_data_type:输入点云对应的类别, 大小为 点数*m_cls_num*float
  507. //p_data_point:输入点云数据(xyz)
  508. //cloud_vector::输出带颜色的点云vector
  509. Error_manager Point_sift_segmentation::recovery_float_to_cloud(float* p_data_type, float* p_data_point, std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>& cloud_vector)
  510. {
  511. if ( p_data_type == NULL || p_data_point == NULL )
  512. {
  513. return Error_manager(Error_code::POINTER_IS_NULL, Error_level::MINOR_ERROR,
  514. " recovery_float_to_cloud p_data_type or p_data_point POINTER_IS_NULL ");
  515. }
  516. //为cloud_vector 添加m_cls_num个点云, 提前分配内存
  517. for (int k = 0; k < m_cls_num; ++k)
  518. {
  519. pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_rgb(new pcl::PointCloud<pcl::PointXYZRGB>);
  520. cloud_vector.push_back(cloud_rgb);
  521. }
  522. //遍历data数据,
  523. for (int i = 0; i < m_point_num; ++i)
  524. {
  525. pcl::PointXYZRGB t_point;
  526. t_point.x = *(p_data_point + i * 3);
  527. t_point.y = *(p_data_point + i * 3 + 1);
  528. t_point.z = *(p_data_point + i * 3 + 2);
  529. if (t_point.x > m_maxp.x || t_point.x<m_minp.x
  530. || t_point.y>m_maxp.y || t_point.y<m_minp.y
  531. || t_point.z>m_maxp.z || t_point.z < m_minp.z)
  532. {
  533. continue;
  534. }
  535. //当前点 的类别百分比的指针
  536. float* tp_type_percent = p_data_type + i*m_cls_num;
  537. //当前点 的类别, 初始化为0
  538. int t_cls = 0;
  539. //当前点 的类别, 百分比的最大值
  540. float t_type_percent_max = tp_type_percent[0];
  541. //循环比较, 找出百分比最大的类别
  542. for (int j = 1; j < m_cls_num; j++) //前面已经把第0个用来初始化了, 后续从第下一个开始比较
  543. {
  544. if (tp_type_percent[j] > t_type_percent_max)
  545. {
  546. t_type_percent_max = tp_type_percent[j];
  547. t_cls = j;
  548. }
  549. }
  550. //根据点的类别, 添加颜色, 并且分别加入到各自的点云里面
  551. switch ( t_cls )
  552. {
  553. case 0: //第0类, 绿色, 轮胎
  554. t_point.r = 0;
  555. t_point.g = 255;
  556. t_point.b = 0;
  557. break;
  558. case 1://第1类, 白色, 车身
  559. t_point.r = 255;
  560. t_point.g = 255;
  561. t_point.b = 255;
  562. break;
  563. // case 2:
  564. // ;
  565. // break;
  566. default:
  567. break;
  568. }
  569. cloud_vector[t_cls]->push_back(t_point);
  570. }
  571. //校验点云的数量, 要求size>0
  572. if(cloud_vector[0]->size() <=0)
  573. {
  574. return Error_manager(Error_code::LOCATER_SIFT_PREDICT_NO_WHEEL_POINT, Error_level::MINOR_ERROR,
  575. " recovery_float_to_cloud NO_WHEEL_POINT ");
  576. }
  577. if(cloud_vector[1]->size() <=0)
  578. {
  579. return Error_manager(Error_code::LOCATER_SIFT_PREDICT_NO_CAR_POINT, Error_level::MINOR_ERROR,
  580. " recovery_float_to_cloud NO_CAR_POINT ");
  581. }
  582. return Error_code::SUCCESS;
  583. }
  584. //恢复点云, 将float*转换成点云
  585. //p_data_type:输入点云对应的类别(取值 0 ~ m_cls_num-1 ),大小为 点数*int
  586. //p_data_point:输入点云数据(xyz)
  587. //cloud_vector::输出带颜色的点云vector
  588. Error_manager Point_sift_segmentation::recovery_float_to_cloud(int* p_data_type, float* p_data_point, std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>& cloud_vector)
  589. {
  590. if ( p_data_type == NULL || p_data_point == NULL )
  591. {
  592. return Error_manager(Error_code::POINTER_IS_NULL, Error_level::MINOR_ERROR,
  593. " recovery_float_to_cloud p_data_type or p_data_point POINTER_IS_NULL ");
  594. }
  595. //为cloud_vector 添加m_cls_num个点云, 提前分配内存
  596. for (int k = 0; k < m_cls_num; ++k)
  597. {
  598. pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_rgb(new pcl::PointCloud<pcl::PointXYZRGB>);
  599. cloud_vector.push_back(cloud_rgb);
  600. }
  601. //遍历data数据,
  602. for (int i = 0; i < m_point_num; ++i)
  603. {
  604. pcl::PointXYZRGB t_point;
  605. t_point.x = *(p_data_point + i * 3);
  606. t_point.y = *(p_data_point + i * 3 + 1);
  607. t_point.z = *(p_data_point + i * 3 + 2);
  608. if (t_point.x > m_maxp.x || t_point.x<m_minp.x
  609. || t_point.y>m_maxp.y || t_point.y<m_minp.y
  610. || t_point.z>m_maxp.z || t_point.z < m_minp.z)
  611. {
  612. continue;
  613. }
  614. //当前点 的类别, 初始化为0
  615. int t_cls = p_data_type[i];
  616. //根据点的类别, 添加颜色, 并且分别加入到各自的点云里面
  617. switch ( t_cls )
  618. {
  619. case 0: //第0类, 绿色, 轮胎
  620. t_point.r = 0;
  621. t_point.g = 255;
  622. t_point.b = 0;
  623. break;
  624. case 1://第1类, 白色, 车身
  625. t_point.r = 255;
  626. t_point.g = 255;
  627. t_point.b = 255;
  628. break;
  629. // case 2:
  630. // ;
  631. // break;
  632. default:
  633. break;
  634. }
  635. cloud_vector[t_cls]->push_back(t_point);
  636. }
  637. //校验点云的数量, 要求size>0
  638. if(cloud_vector[0]->size() <=0)
  639. {
  640. return Error_manager(Error_code::LOCATER_SIFT_PREDICT_NO_WHEEL_POINT, Error_level::MINOR_ERROR,
  641. " recovery_float_to_cloud NO_WHEEL_POINT ");
  642. }
  643. if(cloud_vector[1]->size() <=0)
  644. {
  645. return Error_manager(Error_code::LOCATER_SIFT_PREDICT_NO_CAR_POINT, Error_level::MINOR_ERROR,
  646. " recovery_float_to_cloud NO_CAR_POINT ");
  647. }
  648. return Error_code::SUCCESS;
  649. }
  650. //保存点云数据
  651. Error_manager Point_sift_segmentation::save_cloud(std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>& cloud_vector,std::string save_dir)
  652. {
  653. if(cloud_vector.size()>0) {
  654. std::string sift_in = save_dir + "/SIFT_cls_0.txt";
  655. save_rgb_cloud_txt(sift_in, *cloud_vector[0]);
  656. }
  657. if(cloud_vector.size()>1) {
  658. std::string sift_in = save_dir + "/SIFT_cls_1.txt";
  659. save_rgb_cloud_txt(sift_in, *cloud_vector[1]);
  660. }
  661. if(cloud_vector.size()>2) {
  662. std::string sift_in = save_dir + "/SIFT_cls_2.txt";
  663. save_rgb_cloud_txt(sift_in, *cloud_vector[2]);
  664. }
  665. std::string sift_in = save_dir + "/SIFT_TOTAL.txt";
  666. save_rgb_cloud_txt(sift_in, cloud_vector);
  667. return Error_code::SUCCESS;
  668. }