|
@@ -0,0 +1,382 @@
|
|
|
+/*
|
|
|
+ * @Description: 区域状态检查类,用于判断当前各区域车辆状态(已停好、运动中),以及周围是否有障碍物
|
|
|
+ * @Author: yct
|
|
|
+ * @Date: 2021-12-21 19:54:34
|
|
|
+ * @LastEditTime: 2021-12-28 11:53:11
|
|
|
+ * @LastEditors: yct
|
|
|
+ */
|
|
|
+
|
|
|
+#ifndef REGION_STATUS_CHECKER_HH
|
|
|
+#define REGION_STATUS_CHECKER_HH
|
|
|
+#include "../tool/singleton.h"
|
|
|
+#include "../tool/common_data.h"
|
|
|
+#include "../error_code/error_code.h"
|
|
|
+#include <map>
|
|
|
+#include <mutex>
|
|
|
+#include <deque>
|
|
|
+#include <chrono>
|
|
|
+#include <vector>
|
|
|
+#include <algorithm>
|
|
|
+#include <thread>
|
|
|
+#include "glog/logging.h"
|
|
|
+
|
|
|
+#include <pcl/point_types.h>
|
|
|
+#include <pcl/point_cloud.h>
|
|
|
+// #include <pcl/registration/ndt.h>
|
|
|
+#include <pcl/filters/voxel_grid.h>
|
|
|
+
|
|
|
+#include "icp_svd_registration.hpp"
|
|
|
+
|
|
|
+// #include "opencv2/opencv.hpp"
|
|
|
+#include "../tool/point_tool.h"
|
|
|
+
|
|
|
+#define DEFAULT_REGION_STATUS_TIMEOUT_MILLI 30000
|
|
|
+#define DEFAULT_REGION_STATUS_MAX_QUEUE_SIZE 600
|
|
|
+// 检测到静止后稳定时间
|
|
|
+#define MIN_STABLE_TIME_MILLI 1000
|
|
|
+// 外点差异量
|
|
|
+#define OUTSIDE_POINT_LIMIT 30
|
|
|
+
|
|
|
+class Region_status_checker : public Singleton<Region_status_checker>
|
|
|
+{
|
|
|
+ // 子类必须把父类设定为友元函数,这样父类才能使用子类的私有构造函数。
|
|
|
+ friend class Singleton<Region_status_checker>;
|
|
|
+
|
|
|
+struct Region_measure_info_stamped
|
|
|
+{
|
|
|
+ Common_data::Car_wheel_information_stamped measure_result;
|
|
|
+ pcl::PointCloud<pcl::PointXYZ> cloud;
|
|
|
+};
|
|
|
+
|
|
|
+public:
|
|
|
+ // 必须关闭拷贝构造和赋值构造,只能通过 get_instance 函数来进行操作唯一的实例。
|
|
|
+ Region_status_checker(const Region_status_checker &) = delete;
|
|
|
+ Region_status_checker &operator=(const Region_status_checker &) = delete;
|
|
|
+ ~Region_status_checker() = default;
|
|
|
+
|
|
|
+ void Region_status_checker_init()
|
|
|
+ {
|
|
|
+ mb_exit = false;
|
|
|
+ mp_icp_svd = new ICPSVDRegistration(0.1, 0.0018, 0.036, 20);
|
|
|
+ // mp_ndt = pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ>::Ptr(new pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ>);
|
|
|
+ // mp_ndt->setMaxCorrespondenceDistance(0.2);
|
|
|
+ // mp_ndt->setTransformationEpsilon(0.01);
|
|
|
+ // mp_ndt->setEuclideanFitnessEpsilon(0.09);
|
|
|
+ // mp_ndt->setMaximumIterations(10);
|
|
|
+ m_manager_thread = new std::thread(&Region_status_checker::thread_func, this);
|
|
|
+ }
|
|
|
+
|
|
|
+ void Region_status_checker_uninit()
|
|
|
+ {
|
|
|
+ mb_exit = true;
|
|
|
+ if(m_manager_thread != nullptr)
|
|
|
+ {
|
|
|
+ if(m_manager_thread->joinable())
|
|
|
+ {
|
|
|
+ m_manager_thread->join();
|
|
|
+ }
|
|
|
+ delete m_manager_thread;
|
|
|
+ m_manager_thread = nullptr;
|
|
|
+ }
|
|
|
+ if(mp_icp_svd!=nullptr)
|
|
|
+ {
|
|
|
+ delete mp_icp_svd;
|
|
|
+ mp_icp_svd = nullptr;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 更新测量数据回调
|
|
|
+ void add_measure_data(int terminal_id, Common_data::Car_wheel_information_stamped& measure_result, pcl::PointCloud<pcl::PointXYZ>& cloud)
|
|
|
+ {
|
|
|
+ Region_measure_info_stamped data;
|
|
|
+ data.measure_result = measure_result;
|
|
|
+ std::vector<int> index;
|
|
|
+ // cloud.is_dense = false;
|
|
|
+ // pcl::removeNaNFromPointCloud(cloud, data.cloud, index);
|
|
|
+ data.cloud = cloud;
|
|
|
+ if (!data.measure_result.wheel_data.correctness)
|
|
|
+ return;
|
|
|
+// LOG(INFO) << data.wheel_data.to_string();
|
|
|
+ // 未创建队列
|
|
|
+ std::lock_guard<std::mutex> lck(m_mutex);
|
|
|
+ if (m_measure_results_map.find(terminal_id) == m_measure_results_map.end())
|
|
|
+ {
|
|
|
+ std::deque<Region_measure_info_stamped> t_deque;
|
|
|
+ t_deque.push_back(data);
|
|
|
+ m_measure_results_map.insert(std::pair<int, std::deque<Region_measure_info_stamped>>(terminal_id, t_deque));
|
|
|
+ }
|
|
|
+ else//已创建
|
|
|
+ {
|
|
|
+ m_measure_results_map[terminal_id].push_back(data);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 根据当前帧判断区域停车状态
|
|
|
+ // 当前帧不需要存在正确结果,利用点云判断是否车辆未移动即可
|
|
|
+ Error_manager get_region_parking_status(int terminal_id, Common_data::Car_wheel_information_stamped& measure_result, pcl::PointCloud<pcl::PointXYZ>& cloud)
|
|
|
+ {
|
|
|
+ std::lock_guard<std::mutex> lck(m_mutex);
|
|
|
+ if(cloud.size() <= 0)
|
|
|
+ {
|
|
|
+ return Error_manager(WJ_FILTER_LACK_OF_RESULT, MINOR_ERROR, (std::string("当前空点云 终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ if(mp_icp_svd == nullptr)
|
|
|
+ {
|
|
|
+ return Error_manager(WJ_FILTER_LACK_OF_RESULT, MINOR_ERROR, (std::string("当前icp空指针 终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ if(m_measure_results_map.find(terminal_id) == m_measure_results_map.end())
|
|
|
+ {
|
|
|
+ return Error_manager(WJ_FILTER_LACK_OF_RESULT, MINOR_ERROR, (std::string("暂无最近历史数据用于推测当前状态 终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ // 时间检查, 当前队列中数据全为正确
|
|
|
+ // 计算最近一帧外框,x一边外扩4cm, y一边外扩100cm
|
|
|
+ auto last_data_ref = m_measure_results_map[terminal_id].back();
|
|
|
+ if(std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now()-last_data_ref.measure_result.measure_time).count() > DEFAULT_REGION_STATUS_TIMEOUT_MILLI)
|
|
|
+ {
|
|
|
+ return Error_manager(WJ_FILTER_LACK_OF_RESULT, MINOR_ERROR, (std::string("最近历史数据超时 终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ // 截取当前帧框内与框外点云
|
|
|
+ Eigen::Vector2d t_last_center(
|
|
|
+ last_data_ref.measure_result.wheel_data.car_center_x,
|
|
|
+ last_data_ref.measure_result.wheel_data.car_center_y);
|
|
|
+ Eigen::Vector2d t_width_height(
|
|
|
+ last_data_ref.measure_result.wheel_data.car_wheel_width + 0.08,
|
|
|
+ last_data_ref.measure_result.wheel_data.car_wheel_base + 2.0);
|
|
|
+
|
|
|
+ // 历史正确数据整车旋转
|
|
|
+ Eigen::Rotation2Dd t_rot((90 - last_data_ref.measure_result.wheel_data.car_angle) * M_PI / 180.0);
|
|
|
+ Eigen::Matrix2d t_rot_mat = t_rot.toRotationMatrix();
|
|
|
+
|
|
|
+ // 计算历史(模板)框内点云与框外点云
|
|
|
+ pcl::PointCloud<pcl::PointXYZ>::Ptr t_prev_cloud_inside = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
|
|
|
+ pcl::PointCloud<pcl::PointXYZ>::Ptr t_prev_cloud_outside = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
|
|
|
+ for (size_t i = 0; i < last_data_ref.cloud.size(); i++)
|
|
|
+ {
|
|
|
+ Eigen::Vector2d t_point(last_data_ref.cloud[i].x - t_last_center.x(), last_data_ref.cloud[i].y - t_last_center.y());
|
|
|
+ Eigen::Vector2d t_rot_point = t_rot_mat * t_point;
|
|
|
+ if (t_rot_point.x() > -t_width_height.x() / 2.0 && t_rot_point.x() < t_width_height.x() / 2.0 && t_rot_point.y() > -t_width_height.y() / 2.0 && t_rot_point.y() < t_width_height.y() / 2.0)
|
|
|
+ {
|
|
|
+ t_prev_cloud_inside->push_back(last_data_ref.cloud[i]);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t_prev_cloud_outside->push_back(last_data_ref.cloud[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ // if(std::isfinite(last_data_ref.cloud[i].x) && std::isfinite(last_data_ref.cloud[i].y) && std::isfinite(last_data_ref.cloud[i].z))
|
|
|
+ // {
|
|
|
+ // }else
|
|
|
+ // {
|
|
|
+ // std::cout << "!!!!!!!!!!!!!!!!!!!!!!!! prev nan point" << std::endl;
|
|
|
+
|
|
|
+ // }
|
|
|
+ }
|
|
|
+
|
|
|
+ // 计算当前帧在框内与框外点云
|
|
|
+ pcl::PointCloud<pcl::PointXYZ>::Ptr t_curr_cloud_inside = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
|
|
|
+ pcl::PointCloud<pcl::PointXYZ>::Ptr t_curr_cloud_outside = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
|
|
|
+ std::vector<int> index;
|
|
|
+ pcl::PointCloud<pcl::PointXYZ> t_cloud_valid;
|
|
|
+ t_cloud_valid = cloud;
|
|
|
+ // t_cloud_valid.is_dense = false;
|
|
|
+ // pcl::removeNaNFromPointCloud(t_cloud_valid, t_cloud_valid, index);
|
|
|
+ for (size_t i = 0; i < t_cloud_valid.size(); i++)
|
|
|
+ {
|
|
|
+ Eigen::Vector2d t_point(t_cloud_valid[i].x - t_last_center.x(), t_cloud_valid[i].y - t_last_center.y());
|
|
|
+ Eigen::Vector2d t_rot_point = t_rot_mat * t_point;
|
|
|
+ if (t_rot_point.x() > -t_width_height.x() / 2.0 && t_rot_point.x() < t_width_height.x() / 2.0 && t_rot_point.y() > -t_width_height.y() / 2.0 && t_rot_point.y() < t_width_height.y() / 2.0)
|
|
|
+ {
|
|
|
+ t_curr_cloud_inside->push_back(t_cloud_valid[i]);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ t_curr_cloud_outside->push_back(t_cloud_valid[i]);
|
|
|
+ }
|
|
|
+ // if(std::isfinite(t_cloud_valid[i].x) && std::isfinite(t_cloud_valid[i].y) && std::isfinite(t_cloud_valid[i].z))
|
|
|
+ // {
|
|
|
+ // }else{
|
|
|
+ // std::cout << "!!!!!!!!!!!!!!!!!!!!!!!! curr nan point" << std::endl;
|
|
|
+
|
|
|
+ // }
|
|
|
+ }
|
|
|
+ if(t_prev_cloud_inside->size() <= 30 || t_curr_cloud_inside->size() <= 30)
|
|
|
+ {
|
|
|
+ char buf[255];
|
|
|
+ sprintf(buf, ",, prev %d, curr %d;; last center(%.3f, %.3f)", t_prev_cloud_inside->size(), t_curr_cloud_inside->size(), t_last_center.x(), t_last_center.y());
|
|
|
+ return Error_manager(WJ_FILTER_LACK_OF_RESULT, MINOR_ERROR, (std::string("区域剪切后无点可用于匹配 终端") + std::to_string(terminal_id)+std::string(buf)).c_str());
|
|
|
+ }
|
|
|
+ // std::cout << "000" << std::endl;
|
|
|
+
|
|
|
+ // 直接使用当前时间,测量时间传入存在变为0的情况!!!!!
|
|
|
+ measure_result.measure_time = std::chrono::system_clock::now();
|
|
|
+ double dtime = std::chrono::duration_cast<std::chrono::milliseconds>(measure_result.measure_time - last_data_ref.measure_result.measure_time).count();
|
|
|
+ // double curr_time = std::chrono::duration_cast<std::chrono::milliseconds>(measure_result.measure_time.time_since_epoch()).count();
|
|
|
+ // double last_time = std::chrono::duration_cast<std::chrono::milliseconds>(last_data_ref.measure_result.measure_time.time_since_epoch()).count();
|
|
|
+ // std::cout << "dtime " << dtime / 1000.0 << ",, curr, last: " << curr_time << ", " << last_time << ", diff: " << curr_time - last_time << std::endl;
|
|
|
+
|
|
|
+ // icp计算前后内点匹配情况
|
|
|
+ //下采样
|
|
|
+ pcl::VoxelGrid<pcl::PointXYZ> vox; //创建滤波对象
|
|
|
+ vox.setInputCloud(t_prev_cloud_inside); //设置需要过滤的点云给滤波对象
|
|
|
+ vox.setLeafSize(0.03f, 0.03f, 0.03f); //设置滤波时创建的体素体积为1cm的立方体
|
|
|
+ vox.filter(*t_prev_cloud_inside); //执行滤波处理,存储输出
|
|
|
+
|
|
|
+ vox.setInputCloud(t_curr_cloud_inside); //设置需要过滤的点云给滤波对象
|
|
|
+ vox.setLeafSize(0.03f, 0.03f, 0.03f); //设置滤波时创建的体素体积为1cm的立方体
|
|
|
+ vox.filter(*t_curr_cloud_inside); //执行滤波处理,存储输出
|
|
|
+
|
|
|
+ mp_icp_svd->SetInputTarget(t_prev_cloud_inside);
|
|
|
+
|
|
|
+
|
|
|
+ // static int count = 0;
|
|
|
+ // if(count++ == 20)
|
|
|
+ // {
|
|
|
+ // save_cloud_txt(t_prev_cloud_inside, "./t_prev_cloud.txt");
|
|
|
+ // save_cloud_txt(t_curr_cloud_inside, "./t_curr_cloud.txt");
|
|
|
+ // }
|
|
|
+
|
|
|
+ // std::cout << "111" << std::endl;
|
|
|
+ pcl::PointCloud<pcl::PointXYZ>::Ptr t_result_cloud = pcl::PointCloud<pcl::PointXYZ>::Ptr(new pcl::PointCloud<pcl::PointXYZ>);
|
|
|
+ Eigen::Matrix4f t_pred_pose, t_res_pose;
|
|
|
+ t_pred_pose.setIdentity();
|
|
|
+ if (!mp_icp_svd->ScanMatch(t_curr_cloud_inside, t_pred_pose, t_result_cloud, t_res_pose))
|
|
|
+ {
|
|
|
+ return Error_manager(WJ_FILTER_FLUCTUATING, MINOR_ERROR, (std::string("icp匹配失败,终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }
|
|
|
+
|
|
|
+ if(is_significant(t_res_pose, dtime / 1000.0))
|
|
|
+ {
|
|
|
+ mb_is_stable = false;
|
|
|
+ return Error_manager(WJ_FILTER_FLUCTUATING, MINOR_ERROR, (std::string("检测到车辆移动,终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }else{
|
|
|
+ if (!mb_is_stable)
|
|
|
+ {
|
|
|
+ mb_is_stable = true;
|
|
|
+ m_stable_time = std::chrono::system_clock::now();
|
|
|
+ return Error_manager(WJ_FILTER_FLUCTUATING, MINOR_ERROR, (std::string("开始等待稳定,终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ auto current_time = std::chrono::system_clock::now();
|
|
|
+ double duration = std::chrono::duration_cast<std::chrono::milliseconds>(current_time - m_stable_time).count();
|
|
|
+ if(duration > MIN_STABLE_TIME_MILLI)
|
|
|
+ {
|
|
|
+ // 判断外点数量
|
|
|
+ // LOG_IF(WARNING, terminal_id == 4) << "ouside point prev curr: " << t_prev_cloud_outside->size() << ", " << t_curr_cloud_outside->size();
|
|
|
+ if (t_curr_cloud_outside->size() > (t_prev_cloud_outside->size() + OUTSIDE_POINT_LIMIT))
|
|
|
+ {
|
|
|
+ // debug提示用
|
|
|
+ // LOG_IF(WARNING, terminal_id == 4) << "检测到车身外侧噪点存在!!!";
|
|
|
+ }
|
|
|
+ return SUCCESS;
|
|
|
+ }else
|
|
|
+ {
|
|
|
+ return Error_manager(WJ_FILTER_FLUCTUATING, MINOR_ERROR, (std::string("等待稳定中,终端") + std::to_string(terminal_id)).c_str());
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // std::cout << "333" << std::endl;
|
|
|
+
|
|
|
+ return ERROR;
|
|
|
+ }
|
|
|
+
|
|
|
+ // 显著性判断,平移x方向速度0.02m/s,y方向速度0.02m/s误差,角度3deg/s误差
|
|
|
+ bool is_significant(Eigen::Matrix4f trans, double dtime, double vx_eps = 0.02, double vy_eps = 0.02, double omega_eps = 0.051)
|
|
|
+ {
|
|
|
+ // 间隔时间为负数,或间隔超过0.5s则手动赋值
|
|
|
+ if(dtime<0 || dtime>0.5)
|
|
|
+ {
|
|
|
+ dtime = 0.1;
|
|
|
+ }
|
|
|
+ // return false;
|
|
|
+ Eigen::Vector3f translation = trans.block<3, 1>(0, 3);
|
|
|
+ float rot_angle = fabs(acos((std::min(trans.block<3, 3>(0, 0).trace(), 2.999999f) - 1.0f) / 2.0f));
|
|
|
+ // 值足够小,可当做车辆未移动
|
|
|
+ Eigen::Vector3d velocity(fabs(translation.x() / dtime), fabs(translation.y() / dtime), fabs(rot_angle / dtime));
|
|
|
+
|
|
|
+ if (velocity.x() <= vx_eps && velocity.y() <= vy_eps && velocity.z() <= omega_eps)
|
|
|
+ {
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ // char buf[512] = {0};
|
|
|
+ // sprintf(buf, "显著性分析, 速度 %.3f %.3f %.3f", velocity.x(), velocity.y(), velocity.z());
|
|
|
+ // LOG(INFO) << buf << ", dtime: " << dtime;
|
|
|
+ // // LOG(WARNING) << "???????????????????????????????????显著??????";
|
|
|
+ // if (velocity.x() > vx_eps)
|
|
|
+ // {
|
|
|
+ // LOG(WARNING) << "x:" << velocity.x();
|
|
|
+ // }
|
|
|
+ // if(velocity.y() > vy_eps)
|
|
|
+ // {
|
|
|
+ // LOG(WARNING) << "y:" << velocity.y();
|
|
|
+ // }
|
|
|
+ // if(velocity.z() > omega_eps)
|
|
|
+ // {
|
|
|
+ // LOG(WARNING) << "z:" << velocity.z();
|
|
|
+ // }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ void thread_func()
|
|
|
+ {
|
|
|
+ while(!mb_exit)
|
|
|
+ {
|
|
|
+ {
|
|
|
+ std::lock_guard<std::mutex> lck(m_mutex);
|
|
|
+ for (auto iter = m_measure_results_map.begin(); iter != m_measure_results_map.end(); iter++)
|
|
|
+ {
|
|
|
+ std::deque<Region_measure_info_stamped> *tp_data_queue = &(iter->second);
|
|
|
+ for (size_t i = 0; i < tp_data_queue->size(); i++)
|
|
|
+ {
|
|
|
+ // 判断队列头部(最老历史数据)是否超时,超时则丢出
|
|
|
+ double dtime = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now() - tp_data_queue->front().measure_result.measure_time).count();
|
|
|
+ if(dtime > DEFAULT_REGION_STATUS_TIMEOUT_MILLI)
|
|
|
+ {
|
|
|
+ tp_data_queue->pop_front();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ // 维持队列长度
|
|
|
+ while (tp_data_queue->size() > DEFAULT_REGION_STATUS_MAX_QUEUE_SIZE)
|
|
|
+ {
|
|
|
+ tp_data_queue->pop_front();
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ usleep(1000 * 100);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+private:
|
|
|
+ // 父类的构造函数必须保护,子类的构造函数必须私有。
|
|
|
+ Region_status_checker() = default;
|
|
|
+
|
|
|
+ // map访问锁
|
|
|
+ std::mutex m_mutex;
|
|
|
+ // 各终端测量数据队列
|
|
|
+ std::map<int, std::deque<Region_measure_info_stamped> > m_measure_results_map;
|
|
|
+
|
|
|
+ bool mb_exit;
|
|
|
+ // 内部管理线程
|
|
|
+ std::thread *m_manager_thread;
|
|
|
+
|
|
|
+ // // 配置参数
|
|
|
+ // // 合法时间长度,即过去多久时间内数据有效
|
|
|
+ // double m_valid_time_milli;
|
|
|
+ // // 队列极限长度
|
|
|
+ // double m_max_queue_size;
|
|
|
+
|
|
|
+ // icp匹配
|
|
|
+ ICPSVDRegistration *mp_icp_svd;
|
|
|
+ // 是否已经稳定
|
|
|
+ bool mb_is_stable;
|
|
|
+ // 最初稳定时刻
|
|
|
+ std::chrono::system_clock::time_point m_stable_time;
|
|
|
+
|
|
|
+ // // 点云高度截断,保留底层点云匹配
|
|
|
+ // double height_limit;
|
|
|
+};
|
|
|
+
|
|
|
+#endif // !REGION_STATUS_CHECKER_HH
|