123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688 |
- import time
- import math
- import numpy as np
- # parameters initiation
- STEP_SIZE = 0.2
- MAX_LENGTH = 1000.0
- PI = math.pi
- # class for PATH element
- class PATH:
- def __init__(self, lengths, ctypes, L, x, y, yaw, directions):
- self.lengths = lengths # lengths of each part of path (+: forward, -: backward) [float]
- self.ctypes = ctypes # type of each part of the path [string]
- self.L = L # total path length [float]
- self.x = x # final x positions [m]
- self.y = y # final y positions [m]
- self.yaw = yaw # final yaw angles [rad]
- self.directions = directions # forward: 1, backward:-1
- def calc_optimal_path(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=STEP_SIZE):
- paths = calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=step_size)
- minL = paths[0].L
- mini = 0
- for i in range(len(paths)):
- if paths[i].L <= minL:
- minL, mini = paths[i].L, i
- return paths[mini]
- def calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=STEP_SIZE):
- q0 = [sx, sy, syaw]
- q1 = [gx, gy, gyaw]
- paths = generate_path(q0, q1, maxc)
- for path in paths:
- x, y, yaw, directions = \
- generate_local_course(path.L, path.lengths,
- path.ctypes, maxc, step_size * maxc)
- # convert global coordinate
- path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for (ix, iy) in zip(x, y)]
- path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for (ix, iy) in zip(x, y)]
- path.yaw = [pi_2_pi(iyaw + q0[2]) for iyaw in yaw]
- path.directions = directions
- path.lengths = [l / maxc for l in path.lengths]
- path.L = path.L / maxc
- return paths
- def set_path(paths, lengths, ctypes):
- path = PATH([], [], 0.0, [], [], [], [])
- path.ctypes = ctypes
- path.lengths = lengths
- # check same path exist
- for path_e in paths:
- if path_e.ctypes == path.ctypes:
- if sum([x - y for x, y in zip(path_e.lengths, path.lengths)]) <= 0.01:
- return paths # not insert path
- path.L = sum([abs(i) for i in lengths])
- if path.L >= MAX_LENGTH:
- return paths
- assert path.L >= 0.01
- paths.append(path)
- return paths
- def LSL(x, y, phi):
- u, t = R(x - math.sin(phi), y - 1.0 + math.cos(phi))
- if t >= 0.0:
- v = M(phi - t)
- if v >= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def LSR(x, y, phi):
- u1, t1 = R(x + math.sin(phi), y - 1.0 - math.cos(phi))
- u1 = u1 ** 2
- if u1 >= 4.0:
- u = math.sqrt(u1 - 4.0)
- theta = math.atan2(2.0, u)
- t = M(t1 + theta)
- v = M(t - phi)
- if t >= 0.0 and v >= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def LRL(x, y, phi):
- u1, t1 = R(x - math.sin(phi), y - 1.0 + math.cos(phi))
- if u1 <= 4.0:
- u = -2.0 * math.asin(0.25 * u1)
- t = M(t1 + 0.5 * u + PI)
- v = M(phi - t + u)
- if t >= 0.0 and u <= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def SCS(x, y, phi, paths):
- flag, t, u, v = SLS(x, y, phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["S", "WB", "S"])
- flag, t, u, v = SLS(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["S", "R", "S"])
- return paths
- def SLS(x, y, phi):
- phi = M(phi)
- if y > 0.0 and 0.0 < phi < PI * 0.99:
- xd = -y / math.tan(phi) + x
- t = xd - math.tan(phi / 2.0)
- u = phi
- v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
- return True, t, u, v
- elif y < 0.0 and 0.0 < phi < PI * 0.99:
- xd = -y / math.tan(phi) + x
- t = xd - math.tan(phi / 2.0)
- u = phi
- v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0)
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def CSC(x, y, phi, paths):
- flag, t, u, v = LSL(x, y, phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["WB", "S", "WB"])
- flag, t, u, v = LSL(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, -u, -v], ["WB", "S", "WB"])
- flag, t, u, v = LSL(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["R", "S", "R"])
- flag, t, u, v = LSL(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"])
- flag, t, u, v = LSR(x, y, phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["WB", "S", "R"])
- flag, t, u, v = LSR(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, -u, -v], ["WB", "S", "R"])
- flag, t, u, v = LSR(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["R", "S", "WB"])
- flag, t, u, v = LSR(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, -u, -v], ["R", "S", "WB"])
- return paths
- def CCC(x, y, phi, paths):
- flag, t, u, v = LRL(x, y, phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["WB", "R", "WB"])
- flag, t, u, v = LRL(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, -u, -v], ["WB", "R", "WB"])
- flag, t, u, v = LRL(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, u, v], ["R", "WB", "R"])
- flag, t, u, v = LRL(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, -u, -v], ["R", "WB", "R"])
- # backwards
- xb = x * math.cos(phi) + y * math.sin(phi)
- yb = x * math.sin(phi) - y * math.cos(phi)
- flag, t, u, v = LRL(xb, yb, phi)
- if flag:
- paths = set_path(paths, [v, u, t], ["WB", "R", "WB"])
- flag, t, u, v = LRL(-xb, yb, -phi)
- if flag:
- paths = set_path(paths, [-v, -u, -t], ["WB", "R", "WB"])
- flag, t, u, v = LRL(xb, -yb, -phi)
- if flag:
- paths = set_path(paths, [v, u, t], ["R", "WB", "R"])
- flag, t, u, v = LRL(-xb, -yb, phi)
- if flag:
- paths = set_path(paths, [-v, -u, -t], ["R", "WB", "R"])
- return paths
- def calc_tauOmega(u, v, xi, eta, phi):
- delta = M(u - v)
- A = math.sin(u) - math.sin(delta)
- B = math.cos(u) - math.cos(delta) - 1.0
- t1 = math.atan2(eta * A - xi * B, xi * A + eta * B)
- t2 = 2.0 * (math.cos(delta) - math.cos(v) - math.cos(u)) + 3.0
- if t2 < 0:
- tau = M(t1 + PI)
- else:
- tau = M(t1)
- omega = M(tau - u + v - phi)
- return tau, omega
- def LRLRn(x, y, phi):
- xi = x + math.sin(phi)
- eta = y - 1.0 - math.cos(phi)
- rho = 0.25 * (2.0 + math.sqrt(xi * xi + eta * eta))
- if rho <= 1.0:
- u = math.acos(rho)
- t, v = calc_tauOmega(u, -u, xi, eta, phi)
- if t >= 0.0 and v <= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def LRLRp(x, y, phi):
- xi = x + math.sin(phi)
- eta = y - 1.0 - math.cos(phi)
- rho = (20.0 - xi * xi - eta * eta) / 16.0
- if 0.0 <= rho <= 1.0:
- u = -math.acos(rho)
- if u >= -0.5 * PI:
- t, v = calc_tauOmega(u, u, xi, eta, phi)
- if t >= 0.0 and v >= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def CCCC(x, y, phi, paths):
- flag, t, u, v = LRLRn(x, y, phi)
- if flag:
- paths = set_path(paths, [t, u, -u, v], ["WB", "R", "WB", "R"])
- flag, t, u, v = LRLRn(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, -u, u, -v], ["WB", "R", "WB", "R"])
- flag, t, u, v = LRLRn(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, u, -u, v], ["R", "WB", "R", "WB"])
- flag, t, u, v = LRLRn(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, -u, u, -v], ["R", "WB", "R", "WB"])
- flag, t, u, v = LRLRp(x, y, phi)
- if flag:
- paths = set_path(paths, [t, u, u, v], ["WB", "R", "WB", "R"])
- flag, t, u, v = LRLRp(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, -u, -u, -v], ["WB", "R", "WB", "R"])
- flag, t, u, v = LRLRp(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, u, u, v], ["R", "WB", "R", "WB"])
- flag, t, u, v = LRLRp(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, -u, -u, -v], ["R", "WB", "R", "WB"])
- return paths
- def LRSR(x, y, phi):
- xi = x + math.sin(phi)
- eta = y - 1.0 - math.cos(phi)
- rho, theta = R(-eta, xi)
- if rho >= 2.0:
- t = theta
- u = 2.0 - rho
- v = M(t + 0.5 * PI - phi)
- if t >= 0.0 and u <= 0.0 and v <= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def LRSL(x, y, phi):
- xi = x - math.sin(phi)
- eta = y - 1.0 + math.cos(phi)
- rho, theta = R(xi, eta)
- if rho >= 2.0:
- r = math.sqrt(rho * rho - 4.0)
- u = 2.0 - r
- t = M(theta + math.atan2(r, -2.0))
- v = M(phi - 0.5 * PI - t)
- if t >= 0.0 and u <= 0.0 and v <= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def CCSC(x, y, phi, paths):
- flag, t, u, v = LRSL(x, y, phi)
- if flag:
- paths = set_path(paths, [t, -0.5 * PI, u, v], ["WB", "R", "S", "WB"])
- flag, t, u, v = LRSL(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["WB", "R", "S", "WB"])
- flag, t, u, v = LRSL(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, -0.5 * PI, u, v], ["R", "WB", "S", "R"])
- flag, t, u, v = LRSL(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["R", "WB", "S", "R"])
- flag, t, u, v = LRSR(x, y, phi)
- if flag:
- paths = set_path(paths, [t, -0.5 * PI, u, v], ["WB", "R", "S", "R"])
- flag, t, u, v = LRSR(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["WB", "R", "S", "R"])
- flag, t, u, v = LRSR(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, -0.5 * PI, u, v], ["R", "WB", "S", "WB"])
- flag, t, u, v = LRSR(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, 0.5 * PI, -u, -v], ["R", "WB", "S", "WB"])
- # backwards
- xb = x * math.cos(phi) + y * math.sin(phi)
- yb = x * math.sin(phi) - y * math.cos(phi)
- flag, t, u, v = LRSL(xb, yb, phi)
- if flag:
- paths = set_path(paths, [v, u, -0.5 * PI, t], ["WB", "S", "R", "WB"])
- flag, t, u, v = LRSL(-xb, yb, -phi)
- if flag:
- paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["WB", "S", "R", "WB"])
- flag, t, u, v = LRSL(xb, -yb, -phi)
- if flag:
- paths = set_path(paths, [v, u, -0.5 * PI, t], ["R", "S", "WB", "R"])
- flag, t, u, v = LRSL(-xb, -yb, phi)
- if flag:
- paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["R", "S", "WB", "R"])
- flag, t, u, v = LRSR(xb, yb, phi)
- if flag:
- paths = set_path(paths, [v, u, -0.5 * PI, t], ["R", "S", "R", "WB"])
- flag, t, u, v = LRSR(-xb, yb, -phi)
- if flag:
- paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["R", "S", "R", "WB"])
- flag, t, u, v = LRSR(xb, -yb, -phi)
- if flag:
- paths = set_path(paths, [v, u, -0.5 * PI, t], ["WB", "S", "WB", "R"])
- flag, t, u, v = LRSR(-xb, -yb, phi)
- if flag:
- paths = set_path(paths, [-v, -u, 0.5 * PI, -t], ["WB", "S", "WB", "R"])
- return paths
- def LRSLR(x, y, phi):
- # formula 8.11 *** TYPO IN PAPER ***
- xi = x + math.sin(phi)
- eta = y - 1.0 - math.cos(phi)
- rho, theta = R(xi, eta)
- if rho >= 2.0:
- u = 4.0 - math.sqrt(rho * rho - 4.0)
- if u <= 0.0:
- t = M(math.atan2((4.0 - u) * xi - 2.0 * eta, -2.0 * xi + (u - 4.0) * eta))
- v = M(t - phi)
- if t >= 0.0 and v >= 0.0:
- return True, t, u, v
- return False, 0.0, 0.0, 0.0
- def CCSCC(x, y, phi, paths):
- flag, t, u, v = LRSLR(x, y, phi)
- if flag:
- paths = set_path(paths, [t, -0.5 * PI, u, -0.5 * PI, v], ["WB", "R", "S", "WB", "R"])
- flag, t, u, v = LRSLR(-x, y, -phi)
- if flag:
- paths = set_path(paths, [-t, 0.5 * PI, -u, 0.5 * PI, -v], ["WB", "R", "S", "WB", "R"])
- flag, t, u, v = LRSLR(x, -y, -phi)
- if flag:
- paths = set_path(paths, [t, -0.5 * PI, u, -0.5 * PI, v], ["R", "WB", "S", "R", "WB"])
- flag, t, u, v = LRSLR(-x, -y, phi)
- if flag:
- paths = set_path(paths, [-t, 0.5 * PI, -u, 0.5 * PI, -v], ["R", "WB", "S", "R", "WB"])
- return paths
- def generate_local_course(L, lengths, mode, maxc, step_size):
- point_num = int(L / step_size) + len(lengths) + 3
- px = [0.0 for _ in range(point_num)]
- py = [0.0 for _ in range(point_num)]
- pyaw = [0.0 for _ in range(point_num)]
- directions = [0 for _ in range(point_num)]
- ind = 1
- if lengths[0] > 0.0:
- directions[0] = 1
- else:
- directions[0] = -1
- if lengths[0] > 0.0:
- d = step_size
- else:
- d = -step_size
- ll = 0.0
- for m, l, i in zip(mode, lengths, range(len(mode))):
- if l > 0.0:
- d = step_size
- else:
- d = -step_size
- ox, oy, oyaw = px[ind], py[ind], pyaw[ind]
- ind -= 1
- if i >= 1 and (lengths[i - 1] * lengths[i]) > 0:
- pd = -d - ll
- else:
- pd = d - ll
- while abs(pd) <= abs(l):
- ind += 1
- px, py, pyaw, directions = \
- interpolate(ind, pd, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
- pd += d
- ll = l - pd - d # calc remain length
- ind += 1
- px, py, pyaw, directions = \
- interpolate(ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions)
- if len(px) <= 1:
- return [], [], [], []
- # remove unused data
- while len(px) >= 1 and px[-1] == 0.0:
- px.pop()
- py.pop()
- pyaw.pop()
- directions.pop()
- return px, py, pyaw, directions
- def interpolate(ind, l, m, maxc, ox, oy, oyaw, px, py, pyaw, directions):
- if m == "S":
- px[ind] = ox + l / maxc * math.cos(oyaw)
- py[ind] = oy + l / maxc * math.sin(oyaw)
- pyaw[ind] = oyaw
- else:
- ldx = math.sin(l) / maxc
- if m == "WB":
- ldy = (1.0 - math.cos(l)) / maxc
- elif m == "R":
- ldy = (1.0 - math.cos(l)) / (-maxc)
- gdx = math.cos(-oyaw) * ldx + math.sin(-oyaw) * ldy
- gdy = -math.sin(-oyaw) * ldx + math.cos(-oyaw) * ldy
- px[ind] = ox + gdx
- py[ind] = oy + gdy
- if m == "WB":
- pyaw[ind] = oyaw + l
- elif m == "R":
- pyaw[ind] = oyaw - l
- if l > 0.0:
- directions[ind] = 1
- else:
- directions[ind] = -1
- return px, py, pyaw, directions
- def generate_path(q0, q1, maxc):
- dx = q1[0] - q0[0]
- dy = q1[1] - q0[1]
- dth = q1[2] - q0[2]
- c = math.cos(q0[2])
- s = math.sin(q0[2])
- x = (c * dx + s * dy) * maxc
- y = (-s * dx + c * dy) * maxc
- paths = []
- paths = SCS(x, y, dth, paths)
- paths = CSC(x, y, dth, paths)
- paths = CCC(x, y, dth, paths)
- paths = CCCC(x, y, dth, paths)
- paths = CCSC(x, y, dth, paths)
- paths = CCSCC(x, y, dth, paths)
- return paths
- # utils
- def pi_2_pi(theta):
- while theta > PI:
- theta -= 2.0 * PI
- while theta < -PI:
- theta += 2.0 * PI
- return theta
- def R(x, y):
- """
- Return the polar coordinates (r, theta) of the point (x, y)
- """
- r = math.hypot(x, y)
- theta = math.atan2(y, x)
- return r, theta
- def M(theta):
- """
- Regulate theta to -pi <= theta < pi
- """
- phi = theta % (2.0 * PI)
- if phi < -PI:
- phi += 2.0 * PI
- if phi > PI:
- phi -= 2.0 * PI
- return phi
- def get_label(path):
- label = ""
- for m, l in zip(path.ctypes, path.lengths):
- label = label + m
- if l > 0.0:
- label = label + "+"
- else:
- label = label + "-"
- return label
- def calc_curvature(x, y, yaw, directions):
- c, ds = [], []
- for i in range(1, len(x) - 1):
- dxn = x[i] - x[i - 1]
- dxp = x[i + 1] - x[i]
- dyn = y[i] - y[i - 1]
- dyp = y[i + 1] - y[i]
- dn = math.hypot(dxn, dyn)
- dp = math.hypot(dxp, dyp)
- dx = 1.0 / (dn + dp) * (dp / dn * dxn + dn / dp * dxp)
- ddx = 2.0 / (dn + dp) * (dxp / dp - dxn / dn)
- dy = 1.0 / (dn + dp) * (dp / dn * dyn + dn / dp * dyp)
- ddy = 2.0 / (dn + dp) * (dyp / dp - dyn / dn)
- curvature = (ddy * dx - ddx * dy) / (dx ** 2 + dy ** 2)
- d = (dn + dp) / 2.0
- if np.isnan(curvature):
- curvature = 0.0
- if directions[i] <= 0.0:
- curvature = -curvature
- if len(c) == 0:
- ds.append(d)
- c.append(curvature)
- ds.append(d)
- c.append(curvature)
- ds.append(ds[-1])
- c.append(c[-1])
- return c, ds
- def check_path(sx, sy, syaw, gx, gy, gyaw, maxc):
- paths = calc_all_paths(sx, sy, syaw, gx, gy, gyaw, maxc)
- assert len(paths) >= 1
- for path in paths:
- assert abs(path.x[0] - sx) <= 0.01
- assert abs(path.y[0] - sy) <= 0.01
- assert abs(path.yaw[0] - syaw) <= 0.01
- assert abs(path.x[-1] - gx) <= 0.01
- assert abs(path.y[-1] - gy) <= 0.01
- assert abs(path.yaw[-1] - gyaw) <= 0.01
- # course distance check
- d = [math.hypot(dx, dy)
- for dx, dy in zip(np.diff(path.x[0:len(path.x) - 1]),
- np.diff(path.y[0:len(path.y) - 1]))]
- for i in range(len(d)):
- assert abs(d[i] - STEP_SIZE) <= 0.001
- def main():
- start_x = 3.0 # [m]
- start_y = 10.0 # [m]
- start_yaw = np.deg2rad(40.0) # [rad]
- end_x = 0.0 # [m]
- end_y = 1.0 # [m]
- end_yaw = np.deg2rad(0.0) # [rad]
- max_curvature = 0.1
- t0 = time.time()
- for i in range(1000):
- _ = calc_optimal_path(start_x, start_y, start_yaw, end_x, end_y, end_yaw, max_curvature)
- t1 = time.time()
- print(t1 - t0)
- if __name__ == '__main__':
- main()
|