123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529 |
- /*
- * Software License Agreement (BSD License)
- *
- * Point Cloud Library (PCL) - www.pointclouds.org
- * Copyright (c) 2010, Willow Garage, Inc.
- * Copyright (c) 2012-, Open Perception, Inc.
- *
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
- * * Neither the name of the copyright holder(s) nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- *
- * $Id$
- *
- */
- #ifndef PCL_REGISTRATION_IMPL_GICP_OMP_HPP_
- #define PCL_REGISTRATION_IMPL_GICP_OMP_HPP_
- #include <chrono>
- #include <atomic>
- #include <pcl/registration/boost.h>
- #include <pcl/registration/exceptions.h>
- ///////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::setInputCloud (
- const typename pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::PointCloudSourceConstPtr &cloud)
- {
- setInputSource (cloud);
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget>
- template<typename PointT> void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeCovariances(typename pcl::PointCloud<PointT>::ConstPtr cloud,
- const typename pcl::search::KdTree<PointT>::ConstPtr kdtree,
- MatricesVector& cloud_covariances)
- {
- if (k_correspondences_ > int (cloud->size ()))
- {
- PCL_ERROR ("[pclomp::GeneralizedIterativeClosestPoint::computeCovariances] Number or points in cloud (%lu) is less than k_correspondences_ (%lu)!\n", cloud->size (), k_correspondences_);
- return;
- }
- // We should never get there but who knows
- if(cloud_covariances.size () < cloud->size ())
- cloud_covariances.resize (cloud->size ());
- std::vector<std::vector<int>> nn_indecies_array(omp_get_max_threads());
- std::vector<std::vector<float>> nn_dist_sq_array(omp_get_max_threads());
- #pragma omp parallel for
- for(int i=0; i<cloud->size(); i++) {
- auto& nn_indecies = nn_indecies_array[omp_get_thread_num()];
- auto& nn_dist_sq = nn_dist_sq_array[omp_get_thread_num()];
- const PointT &query_point = cloud->at(i);
- Eigen::Vector3d mean = Eigen::Vector3d::Zero();
- Eigen::Matrix3d &cov = cloud_covariances[i];
- // Zero out the cov and mean
- cov.setZero ();
- // Search for the K nearest neighbours
- kdtree->nearestKSearch(query_point, k_correspondences_, nn_indecies, nn_dist_sq);
-
- // Find the covariance matrix
- for(int j = 0; j < k_correspondences_; j++) {
- const PointT &pt = (*cloud)[nn_indecies[j]];
-
- mean[0] += pt.x;
- mean[1] += pt.y;
- mean[2] += pt.z;
-
- cov(0,0) += pt.x*pt.x;
-
- cov(1,0) += pt.y*pt.x;
- cov(1,1) += pt.y*pt.y;
-
- cov(2,0) += pt.z*pt.x;
- cov(2,1) += pt.z*pt.y;
- cov(2,2) += pt.z*pt.z;
- }
-
- mean /= static_cast<double> (k_correspondences_);
- // Get the actual covariance
- for (int k = 0; k < 3; k++)
- for (int l = 0; l <= k; l++)
- {
- cov(k,l) /= static_cast<double> (k_correspondences_);
- cov(k,l) -= mean[k]*mean[l];
- cov(l,k) = cov(k,l);
- }
-
- // Compute the SVD (covariance matrix is symmetric so U = V')
- Eigen::JacobiSVD<Eigen::Matrix3d> svd(cov, Eigen::ComputeFullU);
- cov.setZero ();
- Eigen::Matrix3d U = svd.matrixU ();
- // Reconstitute the covariance matrix with modified singular values using the column // vectors in V.
- for(int k = 0; k < 3; k++) {
- Eigen::Vector3d col = U.col(k);
- double v = 1.; // biggest 2 singular values replaced by 1
- if(k == 2) // smallest singular value replaced by gicp_epsilon
- v = gicp_epsilon_;
- cov+= v * col * col.transpose();
- }
- }
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeRDerivative(const Vector6d &x, const Eigen::Matrix3d &R, Vector6d& g) const
- {
- Eigen::Matrix3d dR_dPhi;
- Eigen::Matrix3d dR_dTheta;
- Eigen::Matrix3d dR_dPsi;
- double phi = x[3], theta = x[4], psi = x[5];
-
- double cphi = cos(phi), sphi = sin(phi);
- double ctheta = cos(theta), stheta = sin(theta);
- double cpsi = cos(psi), spsi = sin(psi);
-
- dR_dPhi(0,0) = 0.;
- dR_dPhi(1,0) = 0.;
- dR_dPhi(2,0) = 0.;
- dR_dPhi(0,1) = sphi*spsi + cphi*cpsi*stheta;
- dR_dPhi(1,1) = -cpsi*sphi + cphi*spsi*stheta;
- dR_dPhi(2,1) = cphi*ctheta;
- dR_dPhi(0,2) = cphi*spsi - cpsi*sphi*stheta;
- dR_dPhi(1,2) = -cphi*cpsi - sphi*spsi*stheta;
- dR_dPhi(2,2) = -ctheta*sphi;
- dR_dTheta(0,0) = -cpsi*stheta;
- dR_dTheta(1,0) = -spsi*stheta;
- dR_dTheta(2,0) = -ctheta;
- dR_dTheta(0,1) = cpsi*ctheta*sphi;
- dR_dTheta(1,1) = ctheta*sphi*spsi;
- dR_dTheta(2,1) = -sphi*stheta;
- dR_dTheta(0,2) = cphi*cpsi*ctheta;
- dR_dTheta(1,2) = cphi*ctheta*spsi;
- dR_dTheta(2,2) = -cphi*stheta;
- dR_dPsi(0,0) = -ctheta*spsi;
- dR_dPsi(1,0) = cpsi*ctheta;
- dR_dPsi(2,0) = 0.;
- dR_dPsi(0,1) = -cphi*cpsi - sphi*spsi*stheta;
- dR_dPsi(1,1) = -cphi*spsi + cpsi*sphi*stheta;
- dR_dPsi(2,1) = 0.;
- dR_dPsi(0,2) = cpsi*sphi - cphi*spsi*stheta;
- dR_dPsi(1,2) = sphi*spsi + cphi*cpsi*stheta;
- dR_dPsi(2,2) = 0.;
-
- g[3] = matricesInnerProd(dR_dPhi, R);
- g[4] = matricesInnerProd(dR_dTheta, R);
- g[5] = matricesInnerProd(dR_dPsi, R);
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::estimateRigidTransformationBFGS (const PointCloudSource &cloud_src,
- const std::vector<int> &indices_src,
- const PointCloudTarget &cloud_tgt,
- const std::vector<int> &indices_tgt,
- Eigen::Matrix4f &transformation_matrix)
- {
- if (indices_src.size () < 4) // need at least 4 samples
- {
- PCL_THROW_EXCEPTION (pcl::NotEnoughPointsException,
- "[pclomp::GeneralizedIterativeClosestPoint::estimateRigidTransformationBFGS] Need at least 4 points to estimate a transform! Source and target have " << indices_src.size () << " points!");
- return;
- }
- // Set the initial solution
- Vector6d x = Vector6d::Zero ();
- x[0] = transformation_matrix (0,3);
- x[1] = transformation_matrix (1,3);
- x[2] = transformation_matrix (2,3);
- x[3] = atan2 (transformation_matrix (2,1), transformation_matrix (2,2));
- x[4] = asin (-transformation_matrix (2,0));
- x[5] = atan2 (transformation_matrix (1,0), transformation_matrix (0,0));
- // Set temporary pointers
- tmp_src_ = &cloud_src;
- tmp_tgt_ = &cloud_tgt;
- tmp_idx_src_ = &indices_src;
- tmp_idx_tgt_ = &indices_tgt;
- // Optimize using forward-difference approximation LM
- const double gradient_tol = 1e-2;
- OptimizationFunctorWithIndices functor(this);
- BFGS<OptimizationFunctorWithIndices> bfgs (functor);
- bfgs.parameters.sigma = 0.01;
- bfgs.parameters.rho = 0.01;
- bfgs.parameters.tau1 = 9;
- bfgs.parameters.tau2 = 0.05;
- bfgs.parameters.tau3 = 0.5;
- bfgs.parameters.order = 3;
- int inner_iterations_ = 0;
- int result = bfgs.minimizeInit (x);
- result = BFGSSpace::Running;
- do
- {
- inner_iterations_++;
- result = bfgs.minimizeOneStep (x);
- if(result)
- {
- break;
- }
- result = bfgs.testGradient(gradient_tol);
- } while(result == BFGSSpace::Running && inner_iterations_ < max_inner_iterations_);
- if(result == BFGSSpace::NoProgress || result == BFGSSpace::Success || inner_iterations_ == max_inner_iterations_)
- {
- PCL_DEBUG ("[pcl::registration::TransformationEstimationBFGS::estimateRigidTransformation]");
- PCL_DEBUG ("BFGS solver finished with exit code %i \n", result);
- transformation_matrix.setIdentity();
- applyState(transformation_matrix, x);
- }
- else
- PCL_THROW_EXCEPTION(pcl::SolverDidntConvergeException,
- "[pcl::" << getClassName () << "::TransformationEstimationBFGS::estimateRigidTransformation] BFGS solver didn't converge!");
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> inline double
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::OptimizationFunctorWithIndices::operator() (const Vector6d& x)
- {
- Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
- gicp_->applyState(transformation_matrix, x);
- double f = 0;
- std::vector<double> f_array(omp_get_max_threads(), 0.0);
- int m = static_cast<int> (gicp_->tmp_idx_src_->size ());
- #pragma omp parallel for
- for (int i = 0; i < m; ++i)
- {
- // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
- pcl::Vector4fMapConst p_src = gicp_->tmp_src_->points[(*gicp_->tmp_idx_src_)[i]].getVector4fMap ();
- // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
- pcl::Vector4fMapConst p_tgt = gicp_->tmp_tgt_->points[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap ();
- Eigen::Vector4f pp (transformation_matrix * p_src);
- // Estimate the distance (cost function)
- // The last coordiante is still guaranteed to be set to 1.0
- // Eigen::AlignedVector3<double> res(pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2]);
- // Eigen::AlignedVector3<double> temp(gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * res);
- Eigen::Vector4d res(pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2], 0.0);
- Eigen::Matrix4d maha = Eigen::Matrix4d::Zero();
- maha.block<3, 3>(0, 0) = gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]);
- Eigen::Vector4d temp (maha * res);
- //increment= res'*temp/num_matches = temp'*M*temp/num_matches (we postpone 1/num_matches after the loop closes)
- double ret = double(res.transpose() * temp);
- f_array[omp_get_thread_num()] += ret;
- }
- f = std::accumulate(f_array.begin(), f_array.end(), 0.0);
- return f/m;
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> inline void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::OptimizationFunctorWithIndices::df (const Vector6d& x, Vector6d& g)
- {
- Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
- gicp_->applyState(transformation_matrix, x);
- //Eigen::Vector3d g_t = g.head<3> ();
- std::vector<Eigen::Matrix4d, Eigen::aligned_allocator<Eigen::Matrix4d>> R_array(omp_get_max_threads());
- std::vector<Eigen::Vector4d, Eigen::aligned_allocator<Eigen::Vector4d>> g_array(omp_get_max_threads());
- for (int i = 0; i < R_array.size(); i++) {
- R_array[i].setZero();
- g_array[i].setZero();
- }
- int m = static_cast<int> (gicp_->tmp_idx_src_->size ());
- #pragma omp parallel for
- for (int i = 0; i < m; ++i)
- {
- // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
- pcl::Vector4fMapConst p_src = gicp_->tmp_src_->points[(*gicp_->tmp_idx_src_)[i]].getVector4fMap ();
- // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
- pcl::Vector4fMapConst p_tgt = gicp_->tmp_tgt_->points[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap ();
- Eigen::Vector4f pp (transformation_matrix * p_src);
- // The last coordiante is still guaranteed to be set to 1.0
- Eigen::Vector4d res (pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2], 0.0);
- // temp = M*res
- Eigen::Matrix4d maha = Eigen::Matrix4d::Zero();
- maha.block<3, 3>(0, 0) = gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]);
- Eigen::Vector4d temp (maha * res);
- // Increment translation gradient
- // g.head<3> ()+= 2*M*res/num_matches (we postpone 2/num_matches after the loop closes)
- // Increment rotation gradient
- pp = gicp_->base_transformation_ * p_src;
- Eigen::Vector4d p_src3 (pp[0], pp[1], pp[2], 0.0);
- g_array[omp_get_thread_num()] += temp;
- R_array[omp_get_thread_num()] += p_src3 * temp.transpose();
- }
- g.setZero();
- Eigen::Matrix4d R = Eigen::Matrix4d::Zero();
- for (int i = 0; i < R_array.size(); i++) {
- R += R_array[i];
- g.head<3>() += g_array[i].head<3>();
- }
- g.head<3>() *= 2.0 / m;
- R *= 2.0 / m;
- gicp_->computeRDerivative(x, R.block<3, 3>(0, 0), g);
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> inline void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::OptimizationFunctorWithIndices::fdf (const Vector6d& x, double& f, Vector6d& g)
- {
- Eigen::Matrix4f transformation_matrix = gicp_->base_transformation_;
- gicp_->applyState(transformation_matrix, x);
- f = 0;
- g.setZero ();
- Eigen::Matrix3d R = Eigen::Matrix3d::Zero ();
- const int m = static_cast<const int> (gicp_->tmp_idx_src_->size ());
- for (int i = 0; i < m; ++i)
- {
- // The last coordinate, p_src[3] is guaranteed to be set to 1.0 in registration.hpp
- pcl::Vector4fMapConst p_src = gicp_->tmp_src_->points[(*gicp_->tmp_idx_src_)[i]].getVector4fMap ();
- // The last coordinate, p_tgt[3] is guaranteed to be set to 1.0 in registration.hpp
- pcl::Vector4fMapConst p_tgt = gicp_->tmp_tgt_->points[(*gicp_->tmp_idx_tgt_)[i]].getVector4fMap ();
- Eigen::Vector4f pp (transformation_matrix * p_src);
- // The last coordiante is still guaranteed to be set to 1.0
- Eigen::Vector3d res (pp[0] - p_tgt[0], pp[1] - p_tgt[1], pp[2] - p_tgt[2]);
- // temp = M*res
- Eigen::Vector3d temp (gicp_->mahalanobis((*gicp_->tmp_idx_src_)[i]) * res);
- // Increment total error
- f+= double(res.transpose() * temp);
- // Increment translation gradient
- // g.head<3> ()+= 2*M*res/num_matches (we postpone 2/num_matches after the loop closes)
- g.head<3> ()+= temp;
- pp = gicp_->base_transformation_ * p_src;
- Eigen::Vector3d p_src3 (pp[0], pp[1], pp[2]);
- // Increment rotation gradient
- R+= p_src3 * temp.transpose();
- }
- f/= double(m);
- g.head<3> ()*= double(2.0/m);
- R*= 2.0/m;
- gicp_->computeRDerivative(x, R, g);
- }
- ////////////////////////////////////////////////////////////////////////////////////////
- template <typename PointSource, typename PointTarget> inline void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::computeTransformation (PointCloudSource &output, const Eigen::Matrix4f& guess)
- {
- pcl::IterativeClosestPoint<PointSource, PointTarget>::initComputeReciprocal ();
- using namespace std;
- // Difference between consecutive transforms
- double delta = 0;
- // Get the size of the target
- const size_t N = indices_->size ();
- // Set the mahalanobis matrices to identity
- mahalanobis_.resize (N, Eigen::Matrix3d::Identity ());
- // Compute target cloud covariance matrices
- if ((!target_covariances_) || (target_covariances_->empty ()))
- {
- target_covariances_.reset (new MatricesVector);
- computeCovariances<PointTarget> (target_, tree_, *target_covariances_);
- }
- // Compute input cloud covariance matrices
- if ((!input_covariances_) || (input_covariances_->empty ()))
- {
- input_covariances_.reset (new MatricesVector);
- computeCovariances<PointSource> (input_, tree_reciprocal_, *input_covariances_);
- }
- base_transformation_ = guess;
- nr_iterations_ = 0;
- converged_ = false;
- double dist_threshold = corr_dist_threshold_ * corr_dist_threshold_;
- std::vector<std::vector<int>> nn_indices_array(omp_get_max_threads());
- std::vector<std::vector<float>> nn_dists_array(omp_get_max_threads());
- for (auto& nn_indices : nn_indices_array) { nn_indices.resize(1); }
- for (auto& nn_dists : nn_dists_array) { nn_dists.resize(1); }
- while(!converged_)
- {
- std::atomic<size_t> cnt;
- cnt = 0;
- std::vector<int> source_indices (indices_->size ());
- std::vector<int> target_indices (indices_->size ());
- // guess corresponds to base_t and transformation_ to t
- Eigen::Matrix4d transform_R = Eigen::Matrix4d::Zero ();
- for(size_t i = 0; i < 4; i++)
- for(size_t j = 0; j < 4; j++)
- for(size_t k = 0; k < 4; k++)
- transform_R(i,j)+= double(transformation_(i,k)) * double(guess(k,j));
- const Eigen::Matrix3d R = transform_R.topLeftCorner<3,3> ();
- #pragma omp parallel for
- for (int i = 0; i < N; i++)
- {
- auto& nn_indices = nn_indices_array[omp_get_thread_num()];
- auto& nn_dists = nn_dists_array[omp_get_thread_num()];
- PointSource query = output[i];
- query.getVector4fMap () = guess * query.getVector4fMap ();
- query.getVector4fMap () = transformation_ * query.getVector4fMap ();
- if (!searchForNeighbors (query, nn_indices, nn_dists))
- {
- PCL_ERROR ("[pcl::%s::computeTransformation] Unable to find a nearest neighbor in the target dataset for point %d in the source!\n", getClassName ().c_str (), (*indices_)[i]);
- continue;
- }
-
- // Check if the distance to the nearest neighbor is smaller than the user imposed threshold
- if (nn_dists[0] < dist_threshold)
- {
- const Eigen::Matrix3d &C1 = (*input_covariances_)[i];
- const Eigen::Matrix3d &C2 = (*target_covariances_)[nn_indices[0]];
- Eigen::Matrix3d &M = mahalanobis_[i];
- // M = R*C1
- M = R * C1;
- // temp = M*R' + C2 = R*C1*R' + C2
- Eigen::Matrix3d temp = M * R.transpose();
- temp+= C2;
- // M = temp^-1
- M = temp.inverse ();
- int c = cnt++;
- source_indices[c] = static_cast<int> (i);
- target_indices[c] = nn_indices[0];
- }
- }
- // Resize to the actual number of valid correspondences
- source_indices.resize(cnt); target_indices.resize(cnt);
- /* optimize transformation using the current assignment and Mahalanobis metrics*/
- previous_transformation_ = transformation_;
- //optimization right here
- try
- {
- rigid_transformation_estimation_(output, source_indices, *target_, target_indices, transformation_);
- /* compute the delta from this iteration */
- delta = 0.;
- for(int k = 0; k < 4; k++) {
- for(int l = 0; l < 4; l++) {
- double ratio = 1;
- if(k < 3 && l < 3) // rotation part of the transform
- ratio = 1./rotation_epsilon_;
- else
- ratio = 1./transformation_epsilon_;
- double c_delta = ratio*fabs(previous_transformation_(k,l) - transformation_(k,l));
- if(c_delta > delta)
- delta = c_delta;
- }
- }
- }
- catch (pcl::PCLException &e)
- {
- PCL_DEBUG ("[pcl::%s::computeTransformation] Optimization issue %s\n", getClassName ().c_str (), e.what ());
- break;
- }
- nr_iterations_++;
- // Check for convergence
- if (nr_iterations_ >= max_iterations_ || delta < 1)
- {
- converged_ = true;
- previous_transformation_ = transformation_;
- PCL_DEBUG ("[pcl::%s::computeTransformation] Convergence reached. Number of iterations: %d out of %d. Transformation difference: %f\n",
- getClassName ().c_str (), nr_iterations_, max_iterations_, (transformation_ - previous_transformation_).array ().abs ().sum ());
- }
- else
- PCL_DEBUG ("[pcl::%s::computeTransformation] Convergence failed\n", getClassName ().c_str ());
- }
- //for some reason the static equivalent methode raises an error
- // final_transformation_.block<3,3> (0,0) = (transformation_.block<3,3> (0,0)) * (guess.block<3,3> (0,0));
- // final_transformation_.block <3, 1> (0, 3) = transformation_.block <3, 1> (0, 3) + guess.rightCols<1>.block <3, 1> (0, 3);
- final_transformation_.topLeftCorner (3,3) = previous_transformation_.topLeftCorner (3,3) * guess.topLeftCorner (3,3);
- final_transformation_(0,3) = previous_transformation_(0,3) + guess(0,3);
- final_transformation_(1,3) = previous_transformation_(1,3) + guess(1,3);
- final_transformation_(2,3) = previous_transformation_(2,3) + guess(2,3);
- // Transform the point cloud
- pcl::transformPointCloud (*input_, output, final_transformation_);
- }
- template <typename PointSource, typename PointTarget> void
- pclomp::GeneralizedIterativeClosestPoint<PointSource, PointTarget>::applyState(Eigen::Matrix4f &t, const Vector6d& x) const
- {
- // !!! CAUTION Stanford GICP uses the Z Y X euler angles convention
- Eigen::Matrix3f R;
- R = Eigen::AngleAxisf (static_cast<float> (x[5]), Eigen::Vector3f::UnitZ ())
- * Eigen::AngleAxisf (static_cast<float> (x[4]), Eigen::Vector3f::UnitY ())
- * Eigen::AngleAxisf (static_cast<float> (x[3]), Eigen::Vector3f::UnitX ());
- t.topLeftCorner<3,3> ().matrix () = R * t.topLeftCorner<3,3> ().matrix ();
- Eigen::Vector4f T (static_cast<float> (x[0]), static_cast<float> (x[1]), static_cast<float> (x[2]), 0.0f);
- t.col (3) += T;
- }
- #endif //PCL_REGISTRATION_IMPL_GICP_HPP_
|